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The angular and temperature dependencies of the electron paramagnetic resonance (EPR) linewidth in 
the weak constant field and of the relaxation rates measurable by the Gorter type experiments in zero 
constant magnetic field (Gorter RRs) are analytically investigated in magnetically concentrated 
paramagnets with the dominating exchange interaction. The consideration is restricted to the 
experiments, where the EPR linewidth is both anisotropic and linear over the temperature. It is 
suggested that under such conditions the EPR broadening is caused by the spin-lattice relaxation of the 
anisotropic interaction via the one-phonon mechanism. The analytical results are brought to the form 
suitable for the extraction of the Dzyaloshinsky-Moriya and the crystal field interaction constants from 
the experiment. It is shown that the EPR linewidth at the constant field direction along any crystal axis 
is equal to the half sum of the zero-field RRs for the two other crystal axes. The obtained results are 
successfully used for the interpretation of the EPR experimental results in the La0.9Sr0.1MnO3 and 
La0.875Sr0.125MnO3 single crystals in the Jahn-Teller strongly distorted phase in the definite temperature 
interval. The angular dependencies of the Gorter RRs and the EPR linewidth are presented graphically 
at the constant field continuous rotations in the three crystallographic planes in La0.9Sr0.1MnO3. 

PACS: 76.30.-v, 75.30.Gw, 76.60.Es. 

Keywords: EPR linewidth angular dependence, anisotropic relaxation rates, one-phonon spin-lattice relaxation. 

1. Introduction 

The lightly doped manganites 1 3La Sr MnOx x  show in the paramagnetic phase intense exchange-

narrowed electron paramagnetic resonance (EPR) signals with a large variation of the EPR linewidth 
as a function of the temperature. Moreover, the single crystals exhibit a pronounced anisotropy of the 

linewidth in the Jahn-Teller strongly distorted ' / ,O I PM  phase and a less anisotropy in weakly 

distorted / ,O I PM  phase (see the x T  phase diagram in Refs. 1, 2). 

The systematic weak field EPR investigations on 1 3La Sr MnOx x  eight single crystals with the Sr 

dopings 0 0.2x   were carried out in [2]. The EPR linewidth angular dependence for 0.05x   and 
temperature dependencies for all samples were presented there. The angular dependence was 
interpreted as caused by the Dzyaloshinsky-Moriya (DM) antisymmetric interaction along the 
antiferromagnetically coupled b axis (we use here the axis notations according to the papers [3]). 
Further, in the detailed paper [3], which were the refinement of the paper [2] for 0.95 0.05 3La Sr MnO  

sample, it was shown that one has to take into account also the DM interaction DMH  within the 

ferromagnetically coupled ac plane. Besides, another source of EPR broadening, namely, the 
interaction with the crystal field (CF) CFH  was taken in the Ref. 3 into account. It should be 

mentioned that the linewidth temperature dependence in [3] was sufficiently weak (of the 

form   /L CW LT T , where LT  is the lattice temperature, and CW  is the compound Curie-Weiss 

temperature). Therefore, the pure spin origin of the EPR broadening was suggested there, without 
taking the spin-lattice relaxation (SLR) into account. Since the strong exchange narrowing takes place 
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in these concentrated paramagnets, the EPR linewidth was determined by the second moment 
conditioned by the anisotropic interactions an DM CFH = H H  divided by the exchange frequency 

ex  [4]. Differing from the weak temperature dependence in [3], the linear temperature dependence 

     EPR EPR
L CW L CWH T H b T       of the anisotropic linewidth was observed in some samples 

in [2] within the definite temperature range. For instance, there is a temperature interval for samples 
with 0.1x   and 0.125x  , where the EPR linewidth is both anisotropic and linear. The linear 
increase of the linewidth was ascribed in [2] to the one-phonon SLR, as it was suggested earlier in 
Refs. 5 and 6 for the same range of the doping. However, the one-phonon SLR of a Zeeman subsystem 
of magnetic ions should have TL directly proportional dependence and should not be anisotropic. 
Besides, in [5] the EPR linewidth values for the three crystals ( 0.1x  , 0.2x  , 0.3x  ) were 
essentially the same at the frequencies 9 GHz   and 36 GHz  . If the one-phonon SLR of a 

Zeeman subsystem would be the reason of the EPR broadening, there would be 2  proportional 
dependence of its rate. It should be mentioned here that recently we suggested the weak field EPR 
broadening model conditioned by the one-phonon mechanism of the SLR most of all of the anH  

freedom degrees rather than these of the Zeeman one for the concentrated paramagnets with the 
dominating exchange interaction [7]. It was demonstrated there that the corresponding SLR rate and, 
consequently, the EPR linewidth are proportional to the anisotropic second moments conditioned by 

anH  rather than proportional to 2.  On the other hand, just the anisotropic second moments are able to 

cause the angular dependence of the EPR linewidth observed in [2, 3]. So, to our mind, the one-
phonon SLR mechanism of the EPR broadening proposed in [7], in which the linewidth is anisotropic 
and does not depend on ,  should be appropriate both for the interpretation of the experiments of 

Refs. 5, 6 and experiments on the single crystals 0.9 0.1 3La Sr MnO  and 0.875 0.125 3La Sr MnO  in the definite 

temperature intervals in Ref. 2. 

The same mechanism should be valid also for the relaxation rates (RR) measurable in the Gorter 
type experiments on 0.9 0.1 3La Sr MnO  and 0.875 0.125 3La Sr MnO  in the zero constant field (“zero-field” RR 

in terms of Refs. 8, 9). It was shown in [7] that the weak field EPR linewidth and the Gorter RRs are 
connected with one another by the simple linear relation. The particular case of this relation was 
revealed in Ref. 10 (see also the references therein) in the experiments on another magnetically 
concentrated crystal 2 2CuCl 2H O :  the EPR half width on the half height at the constant field 

direction along any crystal axis is equal to the half sum of the zero-field RR measured by means of the 
Gorter method for the two other crystal axes (further, “Gorter RRs”). There was also an approach of 
Ref. 11 (see also [12] and [13]), where the different RRs were ascribed to the magnetization 
components along the different axes transverse to a constant field in the laboratory frame of reference 
in the case of the arbitrary anisotropic interaction. 

Possessing the analytical temperature and angular dependencies of the EPR linewidth and the zero-
field RRs, both including DM and CF parameters, it is possible to duplicate by the Gorter type 
experiments the obtaining of the interaction constants from EPR. We would like especially attract the 
attention of the experimentalists to such a possibility. In the given paper, we suppose to refine the 
results of our paper [7] and to apply them to the temperature and angular dependence interpretation of 
the EPR linewidth in [2] and to the description of these dependencies for the "zero-field" Gorter RRs 
in the 0.9 0.1 3La Sr MnO  and 0.875 0.125 3La Sr MnO  compounds within the definite temperature range. 

2. The statement of the problem 

We consider here the spin-system of the single crystals of the magnetically concentrated 
compounds 0.9 0.1 3La Sr MnO  and 0.875 0.125 3La Sr MnO  interacting with the lattice in the weak  

constant field (the condition of the EPR constant field weakness will be presented in Appendix 1). 
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The Hamiltonian of the problem is as follows: 

 0 sph H H H ,      0
is
ex an Z ph   H H H H H , (1) 

where the isotropic Heisenberg superexchange between Mn ions via the oxygen ions is
ex i j

i j

J


  S SH  

is the dominant interaction (J is the superexchange constant), and the EPR anisotropy is conditioned by 
the antisymmetric Dzyaloshinsky-Moriya (DM) interaction DMH  and the interaction with the crystal 

field (CF) CFH  (their sum is denoted by anH ). So, we’d like to bring the explicit expressions of the DM 

interaction DMH  between i and j spins and the one-spin interaction :CFH  

  ,DM ij i ji j    d S SH ,           

,

j m n
CF mn j j

m n

j D S S H ,  

where ijd  is the Dzyaloshinsky-Moriya vector for the pair of i, j spins ,  i jS S ;  j
mnD  are the tensor 

components of the CF interaction constant; , , , .m n X Y Z  The axes , ,X Y Z  of the laboratory 

frame of reference (LFR) are determined in the EPR experiments by the external magnetic field 
along the Z axis and the varying field along the X axis. phH  is the phonon Hamiltonian; we assume 

that the phonons are at the lattice temperature. As in the case of EPR in the sited experimental 
papers, here the Zeeman interaction of Mn ions ZH  is supposed to be the smallest one. A model 

Hamiltonian is taken for the spin-lattice interaction 

  ' ' ' ' ' ' ' ' ' ' ' '

' ' ' ', , ,

n n X X Y Y Z Z
sph

n

e S e S S S
           

   

    H G G G G , (2) 

where ' 'e
   is the component of the crystal deformation tensor, ' '

n

 
G  is the component of the spin-

phonon bond tensor. 

We suppose that in the weak constant field it is the spin subsystem an Z an H H H , which 

exchange energy with the lattice. The interaction is
ex anH H  provides the fast modulation of the local 

magnetic fields, therefore is
exH  cannot participate in the spin-lattice relaxation, as a separate reservoir 

(see Ref. 14). Since the stated problem is essentially many-particle, we shall proceed using the 
thermodynamical model. At that, we suppose that due to the strong spin-spin interactions the 
subsystem an Z an H H H  reaches the internal equilibrium faster than SLR can occur. Therefore, the 

Zubarev method [15] of the nonequilibrium statistical operator was applied by us leading to the 
following formula for the SLR rate (see Appendix 1 for details) 

       
2 3

2

22 2 5 23
1/

2
n nm cB

sph L CWan
ncr an

M T
v

kT 
  

 
     

 
G , (3) 

where , , ;n X Y Z  m  is the Debye frequency; cr  is the crystal density; /c J    is the exchange 

correlation time; v  is the average sound velocity; an  is the mean-square quantum of anH ;   is the 

spin-orbit coupling parameter, and   is the distance of the excited orbit level from the ground one; 

   2
n

an
M   is the second moment calculated with the n-th component of the magnetization of the 

exchange non-coupled spins – in our case, effectively, at the infinitely large temperature. The 

expressions for the second moments    2
X

an
M  ,    2

Y

an
M   conditioned by the interactions DMH  

and CFH , which enter the Eq. (3), with their angular dependencies in the crystallographic frame of 

reference (CFR) are brought in the Section 4 (some raw results were presented in Ref. 16). 
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3. Gorter RRs, EPR linewidth, and their connection 

Let us consider the Gorter type experiment with the low-frequency field directed along the definite 
axis. Suppose that the Gorter low-frequency field is directed along the X or Y axis of our LFR. Then 

XS  or YS  will be the only non-zero variable spin component in Eq. (2), correspondingly. Just XS  or 
YS  will determine then the form of :sphH  in the first case ' ' ' '

' '
,

,

,X X
sph e S   

 
 H G  while in the 

second case ' ' ' '

' '
,

,

.Y Y
sph e S   

 
 H G  

Therefore, the following expressions for the relaxation rates measurable in the corresponding 
experiments of the Gorter type (Gorter RRs) 

        ' '

' '

2 32 2
,

, 22 2 2
,

,

1 /
2 3

X Ym c
X Y B L CWan

cr an

X YT M k T 
 

  
  

     


G G , (4) 

are following from Eq. (3). It was shown in Ref. 7 with the help of the macroscopic consideration that 

the 1 1,  X YT T   relaxation rates are at the same time the relaxation rates of the X  and Y  components of 

the macroscopic magnetization. 

On the other hand, at the EPR experiment the both XS  and YS  are the non-zero variable spin 

components. Then  ' ' ' '

' '

' ',
,

sph
X X X Xe S S    

 
 H G G  and the EPR relaxational broadening 

  11/ 2EPR
Z sphT    [17], corresponding to the SLR rate 1

sphT  , is equal to 

               ' ' ' '

'

2 32 2 2

2 22 2 5 2
, '

1

2 3 2
EPR X X Y Ym c
Z B L CWan an

cr an

M M k T
v    

 

  
  

        


G
G G . (5) 

Comparing (5) with (4), we get the known from the literature [11, 12] relation (further,“Gorter-EPR” 
relation) between the EPR linewidth and the Gorter RRs in the LFR 

   1 11 / 2EPR
Z X YT T     , (6) 

which is confirmed also by the macroscopic consideration (see Ref. 7). It should be mentioned that the 
Gorter-EPR relation is valid at the arbitrary anisotropic interactions. 

We would like to note that the EPR linewidth and Gorter RR angular dependencies as well as their 
inter-relation expressed by the Eq. (6) were obtained by us earlier for the 3KCuF  compound [13]; 

however, only the spin-spin interactions determine there the EPR broadening. 

At the constant field arbitrary direction relatively to the CFR, there is the one-to-one correspondence 
between the angles, which 0H  makes with the axes of CFR, and the angles, which the Gorter field 1H  

measuring 1,XT   and the Gorter field 1H  measuring 1,YT   make with the CFR axes (see Fig. 1 and Table 1). 

 

Figure 1. Connection between the rotation of the LFR relatively to the CFR and the obtaining 1 1 1, ,a b cT T T  

from 1 1,X YT T   (see Appendix 2 for comments). 
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Table 1. Coordinates of the Gorter field vector  1 , H  which is able to measure relaxation

rates of X  1( , )XT    and Y  1( , )YT    components of magnetization drawn in Fig. 1 

(see Appendix 2 for comments). 

Position of LFR 

respectively to CFR   

Coordinates of the Gorter field 

 1 , H  recording  1 ,XT    

Coordinates of the Gorter field 

 1 , H  recording  1 ,YT    

Fig. 1(a) 
   

 
1 1

1 1

0,0 ,0,0

0,0X a

H

T T 



 

H
 

   
 

1 1

1 1

0,0 0, ,0

0,0Y b

H

T T 



 

H
 

Fig. 1(b) 

1 1 1( ,0) ( cos ,0, sin )H H   H

1 1( / 2,0) (0,0, )H  H
 

1 1( / 2,0)X cT T    

   
 

1 1

1 1

,0 0, ,0

,0Y b

H

T T



 



 

H
 

Fig. 1(c)

 
1 1( / 2, ) (0,0, )H   H

 
 1 1/ 2,X cT T     

1 1 1( / 2, ) ( sin , cos ,0)H H    H

1 1( / 2, / 2) ( ,0,0)H   H
 

1 1( / 2, / 2)Y aT T     

Fig. 1(d)

 

1 1 1( , / 2) (0, cos , sin )H H    H

   
 

1 1

1 1

0, / 2 0, ,0

0, / 2X b

H

T T



 



 

H

 

1 1( , / 2) ( ,0,0)H   H
 

 1 1, / 2Y aT T   
 

 

The relation (6) coincides with the corresponding relations of Refs. 8-10 in the particular cases 
when the LFR axes X, Y, Z coincide with the CFR axes a, b, c in the arbitrary order. It should be 

mentioned that a simple method of 1 1 1, ,a b cT T T    obtaining from EPR follows from (6): if the EPR 

linewidths are measured at the constant field directed in turn along the three crystallographic axes, 

then the solution of the three “Gorter-EPR” relations with respect to 1 1 1, ,a b cT T T    will give their 

values. The relaxation rates 1 1 1, , ,a b cT T T    which enter such relations, are nothing but the "zero-field" 

relaxation rates measured in the zero constant fields in the Gorter type experiments known from the 
literature [8-10]. We would like to present the method of their value calculation using the obtained by 

us 1 1,X YT T   expressions for the cases of the constant magnetic field rotations within the three 

crystallographic planes (the LFR rotations relatively to the CFR). These rotations can be depicted in 
the following form: 

It is seen from Fig. 1 that in the case of the arbitrary anisotropic interactions, the analytical 

expressions for 1 1 1, ,a b cT T T    can be obtained from these for 1 1,X YT T   (Eqs. (4)) after the transition to 

CFR at the following rotation angles: 

  1 1 , 0b YT T     , at 0H  rotation in the plane ac; 

 1 1( 2)c XT T     , at 0H  rotation in the plane ab; (7) 

  1 1 , 2a YT T      , at 0H  rotation in the plane bc. 

Here, the following angular coordinates are used: the polar angle  of the LFR Z axis (H0 direction) 
with respect to the crystallographic axis c, and the corresponding azimuthal angle  which is 
counted from the a axis. 

Having in mind the comparison with the experimental data, we take into account in (5) the Debye 

frequency value 3 2 36 ,m cv   where c  is the magnetic ion concentration, the ratio / / ,r Ac N M   
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where AN  is Avogadro number, M  is the molar mass of the compound under consideration. Then the 

EPR linewidth in kOe can be written in the following form: 

                 ' ' ' '

' '

2 2

2 2

10EPR X X Y Y
Z sph c L CWan an

B

H kOe C M M T
g    

 

 


      G G , (8) 

where 
2

2 2 2

1 A
sph B

an

N
C k

v M




     
. 

4. Calculation of the second moments and the mean-square frequencies 

Firstly, we would like to bring some comments to the calculation of the second moments in the 
compounds under consideration. The investigations of Deisenhofer et al [3] show that the 
contributions of the DM and CF interactions enter the full moments additively: 

     2 2 2 .n n n

an DM CF
M M M   Similar to Ref. 3, we shall present the second moments  2

n

an
M  and the 

value 2
an , as the expressions averaged over the r  magnetically nonequivalent ions of the magnetic 

structure      2 2
1

1 / ,
r

n n
anan j

j

M r M


      2 2

1

1 / .
r

an an j
j

r 


   Here the values with the j subscript are 

calculated for the one j-s position ion. At that the DM interaction with the q  nearest i-neighbors of the 

j-s ion contribute to  2
n
DM j

M  and  2
DM j

  in the form of the sums over i  1…q. For the crystals of 

the distorted perovskite structure, – the materials under our consideration, 4r  ; 6q  . It should be 

noted that the summation over i is not required for the one-spin CF interaction. 

The partial second moments of DM interaction in the LFR are equal to 

     2 2

2 2
,

4

3
X Y Z
DM ij ij

i j

a
M d d

r
 

,          2 2

2 2
,

4

3
Y X Z

DM ij ij
i j

a
M d d

r
 

, (9) 

where  1a S S   and the summation way is as described above. The following should be 

mentioned in connection with the a  value. As it is demonstrated in [2], the EPR signal in the doped 
lanthanum manganites is in accordance with the behavior expected within an intermediate 
octahedral ligand field. Such field splits the five d orbitals of Mn ions into a lower triplet 2gt  and an 

upper doublet ge . The dominant Hund's coupling causes the parallel spin alignment of the four d 

electrons of the Mn3+ spins and leads to the so-called high-spin state S  2. Then, if the surrounding 
is ideally octahedral, the Zeeman effect is rather complicated and the observation of an EPR signal 
is rather unlikely. On the other hand, the Jahn-Teller distortion splits the orbital doublet into two 
singlets, where the ground state is a spin quintuplet with the usual Zeeman effect. The three d 
electrons of Mn4+ occupy the triplet 2gt  with the parallel spin alignment S  3/2. The ground state is 

an orbital singlet with a spin quadruplet. So, within the Jahn-Teller strongly distorted O' phase the 
EPR signal is due to the both Mn3+ and Mn4+ spins. However, experiment shows the non-zero 
contribution of the Mn3+ ions even after the transition O'→O. This fact witnesses that the weak 
orthorhombic distortion in O phase is still enough strong to retain the EPR signal of Mn3+ ions. 
Therefore, we assume that for the these phases of the lanthanum manganites with the x doping the 
value S(S  1) is the linear superposition of the both Mn3+ and Mn4+ spin contributions: 

   1 6 1 3.75 .
x

S S x x     At that, we do not take into account that according to [1] the effective 

moments are considerably higher than the spin-only values. The authors of [1] believe that this 
increase is due to the formation of the superparamagnetic clusters (the so-called "giant" spins). 
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For the obtaining the angular dependencies of the different second moments, the transition from the 
LFR to the CFR is needed. 

Accomplishing the transition to the CFR, we take into account the known from Ref. 3 fact that 

all sums over the cross terms ij ijd d   with   , where , , , ,a b c    vanish. Then the second 

moments (9) take the form: 

           2 2 22 2 2 2 2 2 2
2 2

,

4
sin sin cos cos sin sin cos ,

3
X a b c
DM ij ij ij

i j

a
M d d d

r
          

 (10) 

       2 2 22 2
2 2

,

4
cos sin

3
Y a b c

DM ij ij ij
i j

a
M d d d

r
   

, (11) 

where , ,a b c
ij ij ijd d d  are the DM vector ijd  components along the CFR axes. At the calculation of the 

sums  
6 2, ,

1

a b c
ij

i

d

  for the compounds under our consideration, we use the results of the Ref. 3. It is 

shown there that these sums are equal for all of j and can be presented as the functions of only the two 
parameters 1 2,  d d . 

The values of 2
n
CFM  in the LFR have the form 

 

           
                  

2 2

2 2
1

2 2 2

4 3
2

20

2 2 4 4 ,

r
j j j j jX

CF XX YY ZZ XX YY
j

j j j j j j j j
XX YY ZZ XX YY XY XZ YZ

a
M D D D D D

r

D D D D D D D D




    

      

     


       
 (12) 

 

           
                  

2 2

2 2
1

2 2 2

4 3
2

20

2 2 4 4 .

r
j j j j jY

CF XX YY ZZ XX YY
j

j j j j j j j j
XX YY ZZ XX YY XY YZ XZ

a
M D D D D D

r

D D D D D D D D




    

      

     


       
 (13) 

Here  j
mnD  are the components of the CF interaction tensor in the LFR, which are linearly connected 

[3] with those in the CFR  jD . The values of 2
n
CFM  in the CFR will be written only for the 0H  

rotation in the ab plane of the crystal because of their inconvenience. They have the following form 

          2 2 2 2( ) ( ) ( ) ( ) ( )
2 2

1

4 3
 plane 4

5

r
X j j j j j
CF aa bb ab ac bc

j

a
M ab D D D D D

r 

        
, (14) 

 

       

                         

2 2 2( ) ( ) ( ) ( ) ( ) ( )
2 2

1

2 2 2 2

4 3
 plane 0.5 2 0.5 4

10

5 2 3 cos2 .

r
Y j j j j j j
CF cc aa bb aa bb ab

j

j j j j j j j j j
ac bc cc aa bb bb aa ac bc

a
M ab D D D D D D

r

D D D D D D D D D 



         

          


 (15) 

Note that it is possible to obtain the expressions for ,
2
X Y
CFM  in the ас and bc planes from (14, 15), if the 

replacements X Y  are made in the l.h.s. and replacements   ; a, b, c  c, a, b and a, b, c  

c, b, a, – in the r.h.s. of the above expressions, respectively. 

The values of  2 an
M   in the CFR, which are necessary for the EPR linewidth angular dependence 

obtaining, can be easily found from the known  2
n

an
M . 

Also, the straightforward calculation gives the following expression for the DM mean quantum squared 
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         2 2 22

,

4

3
X Y Z

DM ij ij ij
i j

a
d d d

r
    . (16) 

The expression of  2

DM  contains the square of the DM vector length; hence, it is angle 

independent in the CFR and has the following form there: 

         2 2 22

,

4

3
a b c

DM ij ij ij
i j

a
d d d

r
    . (17) 

As to the CF interaction mean quantum squared, it is equal in the LFR to 

 
             

                    

22 2 2 2

1

2
2

1
(4 3) 4 2

20

8 1 4 2 1 4 3 1 .

r
j j j j j

CF XX YY XY XZ YZ
j

j j j j j j
XX YY XX YY ZZ ZZ

a D D D D D
r

a D D a D D D a D




        

       

     

     
 (18) 

After the transition to the CFR for the 0H  rotation in the ab plane (18) takes the form 

 

            

                  
                    

22 2

1

2
2 2 2 2 2

2
2

1
 plane (4 3) 3 / 4 4

20

1/ 4 4 cos4 3 cos 2

8 1 4 2 1 4 3 1 .

r
j j j

CF bb aa ab
j

j j j j j j j
bb aa ab bc ac bc ac

j j j j j j
bb aa bb aa cc cc

ab a D D D
r

D D D D D D D

a D D a D D D a D



 



          

           

       



 (19) 

We have made sure with the help of the computer calculations that the terms of  2

CF  

containing angular dependence practically does not influence the value of  2

CF  (their contribution 

is less than 3%), so, in (19) they can be neglected, and for the numerical calculations we have used 
Eq. (19) without them. 

We would like to make a definite note regarding the spin-phonon bond tensor components ' '

n

 
G . 

They can be considered as the crystal electric field potential arising from the crystal lattice distortions 

[18, p. 241; 19, p. 619]. Further the rough evaluation ' '

2 2 3
03 / 4n e r R

 
 G G  from [18, p. 241] 

will be used for n
  G , where 2r  is the mean distance of the d-electrons from the nucleus squared; 

    1/3
3 3 38 / 3 l m sR R R R


      is the nearest ion О2− average distance from the Mn ion; , ,l m sR R R  

are the long, the middle and the short octahedron axes; 0  is the electric constant. So, we suppose that 

the approximate equality of ' '

X

 
G , ' '

Y

 
G , ' '

Z

 
G  parameters takes place, their mutual value being 

denoted further, as G . 

Knowing the above-calculated second moments, the Gorter RRs 1 1 1, ,a b cT T T    (4) can be written in 

the following explicit form: 

 

         

         

   

2 221 2 2 2 2
2 2

2 221 2 2 2 2
2 2

1 2

4 3 4
4 ,

5 3

4 3 4
4 ,

5 3

4 3

b c
a sph c L CW cc bb bc ac ab ij ijeff

a c
b sph c L CW cc aa ac cb ab ij ijeff

c sph c L CWeff

a a
T C T D D D D D d d

a a
T C T D D D D D d d

a
T C T

 

 

 







                
                


 

 

 

G

G

G      2 22 2 2 2
2 2

4
4 ,

5 3
a b

aa bb ab ac bc ij ij

a
D D D D D d d

               

 (20) 
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where we write  c eff
  instead of c  for the case when the narrowing of the EPR linewidth is caused 

not only by the isotropic exchange (see below). 

5. Comparison with the experiment 

Comparison of the analytical angular and temperature dependencies of the EPR linewidth obtained in 
the refined model of the EPR spin-phonon broadening with the experimental data for the compounds 

0.9 0.1 3La Sr MnO  and 0.875 0.125 3La Sr MnO  will be carried out in the temperature interval ' .CW L O O
T T    

Here CW  is the Curie-Weiss temperature of the O' phase transition to the ferromagnetic phase; 'O O
T  is 

the temperature of the structural transition from the O' phase to the O phase. The temperature interval 
reflects the requirement of the strong Jahn-Teller distortions leading to the DM interaction '( ),L O O

T T  

and the condition CW LT   is necessary for the validity of the Eq. (A11) (see Appendix 1). As is 

shown below, the EPR linewidth angular and temperature dependencies following from this model 
agree with the experimental data. So, to our mind, the angular and temperature dependencies of the 
Gorter RRs presented are also adequate for the pointed compounds. 

Firstly, we would like to make some general notes regarding the result (8). The Eq. (8) is 
anisotropic and linear over the temperature, what is in agreement with the experimental results of 
Ref. 2 for the samples 0.9 0.1 3La Sr MnO  and 0.875 0.125 3La Sr MnO  in the mentioned temperature interval. 

At that, Eq. (8) does not depend on the generator frequency. This fact is in accordance with the 
observation in Ref. 4: the measured EPR linewidths in the similar compounds were essentially the 
same at the generator frequencies 9 GHz   and 36 GHz  . Note, that if it would be the Zeeman 
subsystem which relaxed to the lattice, then its relaxation rate and, correspondingly, the EPR linewidth 

determined by it would be proportional to 2.  On the other hand, the EPR linewidth (8) is proportional 

to  2 .
an

M   Hence, our suggestion that the EPR linewidth is determined in the given case rather by the 

relaxation to the lattice of the anH  interaction, and not of the Zeeman one, leads to the result agreeing 

with the experiment. 

It is shown in Ref. 3, bearing on the experiment, that in a material, where the both DM and CF 
interactions present, their contributions to EPR linewidth are summed up additively. Our formulae 
confirm this fact. Really, since the joint heat capacity of these interactions is proportional to 

2 2 2
an DM CF     and the equality      2 2 2

n n n

an DM CF
M M M   takes place, the relation 

EPR EPR EPR
an DM CF        is also seen from our Eq. (8). Obviously, the same is valid for the Gorter 

RRs, too. Besides, it is demonstrated by the authors of Ref. 3 that the angular dependence of EPR
an  is 

proportional to that of  2 .
an

M   Such regularity also follows from our Eq. (8) in the case, when 

approximate equality of ' '

X

 
G , ' '

Y

 
G , ' '

Z

 
G  parameters takes place, since 2

an  is practically angle 

independent, and the identity            2 2 22X Y

an an an
M M M       is valid. 

Let now begin with the comparison of the EPR linewidth temperature dependence (8) with the 
experimental dependencies in the samples with 0.1,  0.125x   from the paper [2], where it is of the linear 

form: .EPR
Z LH a bT    Following the Ref. 5, we rewrite this dependence in a somewhat different form: 

      EPR EPR
Z Z CW L CWLH H b TT      , (21) 

where   .EPR
Z CW CWH a b     Note that the contribution to the EPR linewidth directly proportional 

to the temperature was observed in Ref. 17 in the A-site ordered compound YBaMn2O6 with the mixed 
valence of the Mn ions (Mn3+ and Mn4+). This contribution was successfully interpreted there, as the 
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result of the Korringa relaxation of the collective ge  electrons. For the quantitative agreement with the 

experiment it was assumed that this relaxation channel was the bottleneck of the relaxation to phonons 
of the united system of ge  electrons and Mn4+ spins. The presence of the highly mobile collective ge  

electrons on the Mn4+ background was the necessary condition for such a relaxation. This condition 
was fulfilled in the A-site ordered compound YBaMn2O6. Differing from that situation, our 

consideration is restricted to the region ' / ,O I PM  of the x T  phase diagram of the Sr doped 

lanthanum manganites [1, 2]. Here the conductivity of the isolator type (see, for instance Ref. 3) takes 
place by means of the thermally activated hopping of the ge  electrons between Mn3+ and Mn4 sites [2]. 

Therefore, the Korringa relaxation cannot be realized here. 

The experimental linewidth temperature dependence in the samples 0.9 0.1 3La Sr MnO  and 

0.875 0.125 3La Sr MnO  of Fig. 3 from the Ref. 2 can be presented in kOe in the form: 

 
   
   

0.1

0.125

0.2 0.0041 156 ,

0.09 0.0043 190 .

Lx

Lx

H T T

H T T





   

   
 (22) 

In (22) the values of the Curie-Weiss temperature of the O  phase  0.1 156 KCW x    and 

 0.125 190 KCW x    are substituted, which are known from Ref. 1. From the comparison of (22) 

with the Eq. (8) obtained by us it is seen at once that the Eq. (8) corresponds to the second term of the 
experimental temperature dependencies (21), (22), while the first term of (21), (22) is not present in 

the Eq. (8). The origin of   0EPR
Z CWH    in Ref. 5 was connected with the spin-spin broadening. 

However, such contribution calculated by the Kubo-Tomita formula [4] under the conditions of the 
strong exchange narrowing, contains the second moment, which in the concentrated paramagnets 
should depend on the temperature according to (A11) (see Appendix 1). Following the papers [20], 

and [21], we suggest that the non-zero temperature independent contribution  EPR
Z CWH   to the EPR 

linewidth in 0.9 0.1 3La Sr MnO  and 0.875 0.125 3La Sr MnO  single crystals is conditioned by the 

inhomogeneous broadening, which is known to be temperature independent. Naturally, the same 
inhomogeneous contribution should be added also to the Gorter RRs (4), so, the correlation (6) 

remains valid. The large inhomogeneous broadening  * EPR
Z CWH     (~200 Oe) can follow from 

the noted in Ref. 2 twin structure of the investigated crystals. 

Finally, the suggested by us EPR linewidth temperature dependence is of the form  

    *EPR
Z L L CWH T b T     , (23) 

where the value b  is equal to  

      2
2

10
sph c eff an

B

b C M
g




 


G . 

Here the value  c eff
  replaces the value / ,c J    its appearance will be explained below. 

We would like to compare the temperature dependence (23) with the experimental ones for the 
samples with 0.1; 0.125x   from Ref. 2 also quantitatively. This comparison faces difficulties because 

the DM and CF interactions parameters, which are necessary for the calculation of  2 an
M   and 2

an  

(see Section 4), are not known to us for the compounds with 0.1; 0.125.x   However, the DM and CF 

interactions parameters were extracted from the experiment in Ref. 3 for 0.05.x   We see the way out 

in the fact that b contains the ratio of the values  2 an
M   and 2 ,an  each of which  

is some linear combination of these parameters squared. Therefore we suppose that 
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     2 2 2

2 2 2

0.1 0.125 0.05

, .an an an

an an an
x x x

M M M

  

  

  

  Not allowing for the latter assumption, b  can be written 

in the more general form: 

 
             22

2 2 2

2 2 2 2 2

0.05 0.1, 0.125 0.05

10
/ .

c eff an an anA
B

B an an an
x x x x

M M MN
b k

g v M


   

  

   

            




G
 (24) 

Though it seems to us that the ratio in the 
parenthesis is of the unity order, further, to be on 
the right side, one should take into account that 
the plots of Fig. 2 are really built in the units 

       2 2

2 2

0.1, 0.125 0.05

/an an

an an
x x x

M M

 

 

  

   
 
  

. 

Note that in (24) we have replaced the 
correlation time /c J    conditioned by the 

usual isotropic exchange for   ,c eff
  which is 

determined by us by the fit of the Eq. (23) to the 
experimental temperature dependence plots from 
Ref. 2. The point is that the correlation time 
calculated with the help of the expression 

 2 1 /c B CWS S k     leads to the value of the 

constant b, which is an order of magnitude larger 
than the experimental one. Since as a result of 
the fit it turned out that ( ) / 30c eff c   for the 

both dopings x  0.1 and x  0.125, the angular 
dependence plots of the Fig. 2 are built with this 

value of   .c eff
  The values 1 1,  ,X YlT lT   where 

10 / Bl g  , are plotted in kOe for the 

relaxation rates of the X  and Y  components of 
Mn ion magnetization, correspondingly, there. 

We explain the effective decrease of the 
correlation time in the samples under 
consideration analogously to the Ref. 5. Namely, 
we suppose that this decrease reflects the 
additional motional narrowing of the EPR 
linewidth due to ge  electron hopping between 

Mn3+ and Mn4+ sites. The motional narrowing 
was absent in La0.95Sr0.05MnO3, but, to our mind, 
plays role for the increased ge  electron hopping 

intensity in the samples under consideration with 
the increased doping.  

We have obtained the following curves of the 
angular dependencies of the transverse magnet-

 
Figure 2. Dashed green and dotted blue curves 
describethe angular dependencies of the relaxation

rates 1 1,X YlT lT   in kOe of the X and Y components of 

Mn ion magnetization, correspondingly, at the 
constant magnetic field rotation relatively to the 
crystallographic axes a, b, c of the sample within its 

three crystallographic planes, 10 / Bl g  . Solid 

red curve describes the angular dependence of the

EPR linewidth EPRH  in kOe. The plot is built for 

0.9 0.1 3La Sr MnO  at 200 K.LT   

 
Figure 3. Temperature dependencies of the EPR line-

width in 0.9 0.1 3La Sr MnO  and 0.875 0.125 3La Sr MnO .

The squares and triangles depict the experimental data
from Ref. 2. The fit according to Eq. (23) of the given 
paper is indicated by a solid line. 
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ization relaxation rates and that of the EPR linewidth in kOe in 0.9 0.1 3La Sr MnO  compound (see Fig. 2; 

here, as in Ref. 3, the b axis is perpendicular to the ferromagnetically ordered ac planes). 

The comparison of the obtained temperature dependencies with the experimental ones are depicted 
on the Fig. 3. It is seen that there is a good agreement with the experiment in the definite temperature 
interval. 

Though the roughness of the used model spin-phonon Hamiltonian and the corresponding value 
evaluations, together with the presence of the fitting parameter, do not enable us to make unambiguous 
quantitative conclusions, the suggested model agreement with the experimental temperature 
dependence seems to be reasonable.  

6. Conclusion 

Summarizing, the following results are obtained for the magnetically concentrated paramagnets under 
conditions of the dominating exchange interaction and for the weak constant magnetic field EPR 
broadening caused by the one-phonon spin-lattice relaxation. The main result is that the analytical 
angular and temperature dependencies of the EPR linewidth obtained agree with the experimental data 
of the Ref. 2 for the 0.9 0.1 3La Sr MnO  and 0.875 0.125 3La Sr MnO  single crystals. So, one may hope that the 

angular and temperature dependencies of the zero-field Gorter relaxation rates obtained are also 
adequate. Further, as it was shown in our recent paper [7], in such materials the EPR half width on the 
half height at a weak constant field 0H  along Z axis can be presented as the half sum of the relaxation 

rates 1 1,  X YT T   of the magnetization components along X and Y axes measurable in the Gorter type 

experiments. These relaxation rates can be measured in the experiments of the Gorter type in the zero 
constant field with the definite (pointed out in the Table 1) directions of the low-frequency field 

relatively to the CFR. The angular dependencies of the half sum of 1 1,  X YT T   coincide with the 

experimentally observed EPR linewidth angular dependencies, thus demonstrating the continuous 
“Gorter-EPR relation”. This continuous “Gorter-EPR relation” coincides with the discrete ones, which 
were confirmed experimentally, in the particular cases of the axes X, Y, Z (LFR) coincidence with the 
axes a, b, c (CFR). Our investigation combines the continuous and the discrete approaches, differing 
both from the discrete consideration of the Refs. 8-10, restricted to the CFR, and the continuous 
consideration of Refs. 11, 12 restricted to the LFR. 

The refined model of Ref. 7 is used for the interpretation of the experimental results of Ref. 2 for 
the single crystals 0.9 0.1 3La Sr MnO  and 0.875 0.125 3La Sr MnO  in the temperature interval, where the EPR 

linewidth is simultaneously anisotropic and linearly dependent on the temperature. At that, the 
anisotropic interaction consisting of the DM and CF interactions effectively relaxes to the lattice. It is 
supposed that all the relaxation rates contain the temperature independent contributions from the 
inhomogeneous broadening. At such a supposition, the temperature dependence of the EPR linewidth 
qualitatively agrees with the experiments of Ref. 2. The angular dependence of the EPR linewidth 
qualitatively agreeing with the experiment of Ref. 2 is presented analytically and for the single crystal 

0.9 0.1 3La Sr MnO  graphically. For the quantitative agreement of the obtained results with the 

experiments of Ref. 2, it was necessary to suppose that the correlation time of the interaction 
narrowing the EPR line is approximately an order of magnitude smaller than the one given only by the 
isotropic exchange. We suppose that the correlation time decreasing is caused by the additional 
motional effect due to the ge -electron hopping between the Mn3+ and Mn4+ sites. 

The obtained microscopic analytical expressions for the zero-field relaxation rates measurable in 
Gorter type experiments and for the EPR linewidth in a weak constant field connect the experimentally 
obtainable macroscopic values of the relaxation rates with the spin structure. Since all these quantities 
are expressed via the constants of the interactions causing magnetic anisotropy, duplication of the getting 
of information on these constants in the new technological materials becomes possible. 
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Appendix 1. Calculation of the one-phonon spin-lattice relaxation rate 

At the calculation of the spin-lattice relaxation rate, we follow Eq. (15, 29) in Ref. 22: 

    
1

21 1 / 2sph an an anT dt K K t




 H , (A1) 

where 

   1
,an an sphK i

     H H ;        2 22 z
an an S H ; (A2) 

the triangular brackets mean the equilibrium thermodynamic averaging; an  is the mean-square 

quantum of anH . Further, 

         exp / exp ( / )an an ph an an phK t i t K i t    H H H H . (A3) 

It should be mentioned that the presence of the strong exchange interaction is
exH  will be taken into 

account later so, as it was done in Ref. 7. 

The following inequalities are fulfilled in the experiments under consideration  

 2
0 0/ ,B anH J g H  , (A4) 

   1/2max 2
02 1B L nnk T S S n J   , (A5) 

where 0H  is the external constant magnetic field in EPR;      12 2 2
0 Sp / Sp z

an B anH g S   H  is 

the mean-square local field of ;anH  TL is the lattice temperature; n0 is the number of the nearest spin 

neighbors and nnJ J  is the exchange integral for them; for the doping x one has 

   1 6 1 3.75 ;
x

S S x x     Bk  and 0  are the Boltzmann and magnetic constants, B  is the Bohr 

magneton. 

The weak field condition (A4) provides the strong exchange narrowing of the EPR line and 
guarantees that it is the anisotropic interaction anH , which relaxes to the lattice during EPR rather than 

the Zeeman interaction. The inequality (A5), according to Huber [23], provides the efficiency of the 
one-phonon spin-lattice mechanism of the EPR broadening and the EPR linewidth linear temperature 
dependence even at sufficiently high temperatures. 

Basing on the arguments brought in the Introduction, we suggest further that the relaxational EPR 
broadening takes place in the single crystal lanthanum manganites with the Sr doping x  0.1 and 
x  0.125 in the definite temperature interval. Spin transitions under the influence of the lattice 
vibrations, shortening the lifetime of the magnetic ions on the spin levels, serve as the broadening 
cause of these levels, and consequently, of the EPR line in the compounds under consideration, the 

corresponding linewidth being [14]   11/ 2EPR
Z sphT   . We suggest also that the SLR is of the one-

phonon type in 0.9 0.1 3La Sr MnO  and 0.875 0.125 3La Sr MnO  and is realized by the crystal electric field 
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modulation at the vibrations of the О2− ions nearest to the magnetic ions (О2− ions are situated in the 
vertices of the octahedrons surrounding Mn ions). Since our quantitative calculations will have the 
evaluation character, we proceed from the model spin-lattice Hamiltonian (2). There , ,n X Y Z  are 

the LFR axes; ,    are the О2− ion coordinates in the local Cartesian frame of reference with the 

origin in the magnetic ion and with the axes along the О2− octahedron axes; ' '

, ,X Y Z

 
G  are the components 

of the spin-phonon bond tensors; 

      '

1/2

', ' ' ' '

2
exp exp

2 4 p p

p p

p
p p

i
e a i a i f f

M    


 

 
     

 
 k k

k

k
k R k R


k

 (A6) 

is the crystal deformation tensor component; crM  is the crystal mass; 
p

k  and 
p

k  are 

correspondingly the frequency and the velocity of a p-s branch phonon possessing wave vector pk ; 

p
a

k  and 
p

ak  are the birth and annihilation operators of such a phonon;   are the directing cosines of 

the phonon polarization vector; f is the wave vector ort. 

Further, the fact is used that in the case of the one-phonon SLR Hamiltonian (2) anK  can be 

presented in the form 

 ' ' ' '

' ' , ,,

n n
an an

n x y z

K e K
   

  

   G ,   where   1 / ,n n
an anK i S  = H . (A7) 

It follows from (A3) and (A7) that 

        ' ' ' ' ' '

' '

2

,

n n n
an an an anK K t e e t K K t

     
 

  G , (A8) 

where   exp expn n
an an an an

i i
K t t K t

       
   

 
 
H H . 

It should be mentioned that the SLR rate in Ref. 7 was obtained in the high temperature 
approximation over all the energies, including the phonon energy. If one does not do the latter 
approximation and passes to the continual limit in the phonon spectrum, then the spin-phonon 
relaxation rate in the long wave approximation in frames of the Debye model has the following form 

 

       

 
 

' '

2
22 25

' ' ' '3 2
', '

'
' '3

20 ' 2

1 1 1
/

16 2

coth .
2

m

n n n
kp an

j nsph cr an

n ex
an

B L ex

v K S d f f
T

d K d
k T

    
 



 
  

  
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





 
   

 


 

   

 





G

 (A9) 

Here m  is the Debye frequency; cr  is the crystal density. Since  n
anK   is the Fourier-transform of 

the normalized correlation function    2
/n n n

an an anK K t K , one has   1n
and K 




 . Note that the 

influence of the strong exchange interaction with the exchange frequency / ,ex J    which is 

suggested to be larger than all other frequencies in the problem under consideration is already taken 
into account in the equation (A9) in the same way, as it was done in Ref. 7. 

Further, in the considered model the following equation is valid: 

          
1

2 2 22 2
2/ ,

L L

n n n n n
an an LanT T

K S S S M T


     H . (A10) 
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Following the result of Ref. 24 and Ref. 25 at the calculation of    
2

1 / 2
L

L
T

n

T
S S S   in the 

second moment denominator we use the relation    0/ /
L

L LT
S S S S T T    


 , where  0 LT  

is the single ion static susceptibility, and  LT  corresponds to the behavior of the exchange coupled 

Mn system. Similar to Ref. 24, we assume that the single ion susceptibility  0 LT  obeys the Curie 

law  0 / ,L LT C T   while  LT  can be approximated by the Curie-Weiss behavior 

   /L L CWT C T   , where C is the Curie constant and CW  is the Curie-Weiss temperature. Then 

the following relation is valid at :L CWT   

        2 2
n nL CW

Lan an
L

T
M T M

T


  . (A11) 

Note that the Eq. (A11) was used in Ref. 7 at LT  . 

Further, evaluating the term    ' '

2
2

' ' ' '
', '

1

2
n d f f    

 

 
 

  
 
 G  in (A9), we make use of the 

corresponding value '4 mm , which is brought in [18], p. 231. However, we shall use it in the 

simplified form – assuming that the longitudinal and the transverse velocities of the acoustic waves are 

equal to one another .l tv v v   We also suppose that the approximate equality of ' '

X

 
G , ' '

Y

 
G , ' '

Z

 
G  

parameters takes place, their mutual value being denoted further, as G.  At 

that,    ' '

2
2

2
' ' ' '

', '

1
4 / 3.

2
n d f f    

 

  
 

   
 
 G G  Note also that if one passes to the variable 

' / ,exx    which was introduced in Ref. 23, in the integral over ',d  then this integral takes the form 

 
 

/3 3
20

1
coth

2 / 1

m ex

ex
B L ex

xJ
dx x

k T x

 


 


  . (A12) 

The expression (A12) is analogous to the function 

  
max 2

max 3

0
/ coth exp

2 2B L
B L

x x
f k T dx x

k T


  

   
 

 , (A13) 

from Ref. 23, in spite of the fact that the different model of the exchange interaction influence on the 

spin-lattice relaxation rate is used there (note that from (A5) max ).J   Because of the  

difficulties to take the integral (A12) exactly analytically, we approximate (A12) as 
2 3

/ 2

0

2 2
.

3

m exB L ex mB L

ex

k T k T
dx x

  


  
 At that, we use the fact that 1

ex c    is the largest frequency in 

the problem under consideration and that according to Ref. 23, at max
B Lk T   the expression (A13) is 

directly proportional to the temperature. Further, the coefficient  2
/   should be added to 1 ,sphT   

where   is the spin-orbit coupling parameter, and   is the distance of the excited orbit level from the 
main one [14]. This is the consequence of the well-known fact that for the case of iron group ions (the 
case under our consideration) the crystal field reduces an orbital magnetic moment /   times [14]. 

Taking into account all the above mentioned and using the definition of the exchange correlation time 
/ ,c J    we obtain the expression (3) for the one-phonon spin-lattice relaxation rate in the main text. 
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Appendix 2. Comments to Fig. 1 

Fig. 1(a). On this figure one of the three versions of the classical "axial" implementation of the Eq. (6) 
(see also [10]) is presented: EPR is observed at 0 Z cH   , while the Gorter RR measurements are 

observed at the low-frequency field along the a ( X a , 1 1
X aT T  ) and b (Y b , 1 1

Y bT T  ) axes. The 

other two "axial" implementations are as follows: 0 Z aH   , X c  ( 1 1
X cT T  ), Y b  ( 1 1

Y bT T  ) 

and 0 Z bH   , X c  ( 1 1
X cT T  ), Y a  ( 1 1

Y aT T  ). The values of 1
aT  , 1

bT   and 1
cT   can be 

calculated with the help of the expressions (20), and the EPR linewidth – by the formula 

  1 11 / 2EPR
i j kT T     , where i, j, k  a, b, c. 

Fig. 1(b). The 0H  rotation from the c axis to the a axis (ac plane) is shown by the arrow. At that, 

the X  axis of the LFR turns also in the ac plane (from a to c), and it is possible to measure 

 1 , 0XT     for any value of   (at 0  ) from the value 1
aT   up to the value 1

cT   (rotation axis Y  

stays immovably, and  1 1, 0Y bT T    ). 

Fig. 1(c). 0H  turns from the a axis to the b axis (ab plane). Here the Y  axis turns in the ab plane 

(from b to a), and it is possible to measure  1 2,YT      between the values 1
bT   and 1

aT   (rotation 

axis X  stays immovably along the c axis, and  1 12,X cT T     ). 

Fig. 1(d). Finally, the 0H  returns to the c axis, X axis turns from с to b, and in the bc plane the 

value of 1( , / 2)XT      can be measured within the limits 1,cT   1
bT  ), while  1 1, / 2y aT T       

(Y axis does not turn). 

It should be noted that the relaxation rates for any   and   values can be calculated by the 

formulae (4) with the taking into account the expressions (10, 11, 14, 15) for  ,
2
X Y

an
M  and the 

additional expressions obtained from (14, 15) with the help of the replacements specified nearby. 
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