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Application of CTRW (continuous time random walks) to dipole hopping transport is reviewed. 
Conditions of applicability of basic kinetic equations to spin systems are indicated. Correct versions of 
derivation of the CTRW-equations are presented. Existence of different forms of memory kernels is 
demonstrated. Correction of Scher-Lax memory kernel within geometrical memory approach is 
fulfilled in accordance with leading terms of concentration expansion. Approximate solution for 
autocorrelation function is considered. Modern state of numerical simulation and experimental 
measurements of autocorrelation function in nuclear polarization delocalization are described. It is 
shown, that application of the CTRW was more successful in description of dipole transport than for 
hopping conductivity. 

PACS: 45.10.Hj, 76.60.-k, 82.56.-b, 76.30.-v, 05.40.-a 

Keywords: random walks, random media, disordered lattice, survival probability, dipole transport, hopping 
transport, master equation, memory kernel, projection operator, spin diffusion 

1. Introduction  

Random walks in disordered lattice are described by the equations 

 0 0 0 0 0( ), ( 0) ,i ji i ij j i ij
p w p w p p t

t


    
   (1) 

where 0 ( )ip t  is the "probability" to find an "excitation" at position ,ir  if it started at 0 r 0  at 0t   

and ij  is the Kronecker’s symbol. Here jiw  is the transition rate for transfer from ir  to .jr  The 

problem of disordered sites will be considered below, when positions jr  are statically and randomly 

distributed on sites of regular lattice, jiw  depends on ij i j r r r , and observables are directly related 

to solution 0( )ip t , averaged over all possible positions { }jr . Occupation number representation allows 

to rewrite Eqs.(1) as [1] 

    (0) ,P n n w P w P A P
t


    

 x0 x z zx x0 xz z0z x0
     (2) 

or 

    (1) ,P n w P n w P A P
t


    

 x0 z zx x0 x xz z0z x0
     (3) 

where the propagator ( )P tx0
  gives the probability to find the excitation at lattice site x , when initially it 

was at the site ,0  and  , .ij i jw w r r  xz x z  Here nr  is occupation number of the site r  by a donor 

( 1(0)n r  if the site r  is (not) occupied by the donor), while the donor is an impurity, which can carry 

the excitation. Eqs. (3) are equivalent to Eqs. (2) because n P Px x0 x0
  , while equivalence of Eqs. (1) and 

(2) is evident, if we omit in (2) all empty sites for which 0n x  and, consequently, 0.P x0
  

The problem consists in calculation of the observable propagator 

 ( ) ( ) .P t P tx0 x0
  (4) 
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Here     is averaging over all possible donors positions in infinite sample. 

Solutions to Eqs. (2) and (3) are of the form   exp / ,P At n c 
x0

x0 0
  where the operator (0)A A  

or (1)A A  and c n x  is the probability of occupation (concentration). The initial condition  

 ( 0) /P t n c x0 x x0
  (5) 

ensures, that the excitation can be placed at site 0  if it is occupied by a donor, and produces evident 
normalization 

 ( ) 1.P t  x0x
 

Occupations of different sites are assumed as independent and having no dependence on the x  
(with small 1c  as a rule): 

 2
1 1, (1 ), .

j j

mm m
j jn c n n c c n n c   
               r r x rx rx r r  

All jr  are different in the last relation. Coincidence in indexes can be treated using the identity 2 .n nr r  

Most important experimental realizations of the process (1) are hopping conductivity, for which the 
CTRW theory of Scher and Lax [2] was developed, Förster electronic energy transfer [3] and spin-
polarization transfer [1]. The simplest transition rates are of the form 

 0 0exp( / ), 0w w r w  z x xxz x   (6) 

for conductivity problem, and 

 6 6
0 0 / ( ) , 0w w r w  z x xxz x  (7) 

for dipole transitions in electronic energy and spin-polarization transfers. Here 0w  corresponds to the 

transition rate at distance 0r  between donors. More advanced representations for transition rates can be 

found in special literature, see, for example, [4] for spin polarization transfer. It should be noted that in 
the problem of spin-polarization transfers the propagator ( )P tx0  represents polarization (instead of 

probability) of a spin at the site ,x  when initially polarization was localized at the site .0  

Polarization transport in disordered media is very important in spin kinetics and magnetic 
resonance. Its manifestations are related, first of all, with spin-lattice and spin-spin relaxation [5-7] as 
well as with establishing and retaining of (quasi)equilibrium [8]. The discovery of the model system 
8Li-6Li is of great importance, because it gives a unique possibility for direct measurement of the 
survival probability ( )P t00  (see [4] and reference therein) contrary to other systems, where the process 

(1) can not be directly observable. 

The conditions of applicability of Eqs. (1-3) to description of spin polarization transport in the 
subsystem of impurity spins require that the speed of the process should be small a) relative to the 
speed of phase relaxation of impurity spins and b) in comparison with the speed of fluctuations of local 
fields on these spins [1, 4]. The model system 8Li-6Li in the LiF single crystal represents excellent 
example for experimental study of the problem. It consists of one beta-active nucleus 8Li with high 
initial polarization and of 6Li nuclei with negligible thermal initial polarization. The nuclei 6Li have 
small controllable concentration, and the difference of gyromagnetic ratios of 6Li and 8Li is rather 

small:  8 6 6/ 0.0057.g g g   The matrix LiF consists of nuclei 7Li and 19F with higher gyromagnetic 

ratios that ensures with high quality the conditions of applicability, mentioned above, in comfortable 
external magnetic field in the range 0200 3G H kG   [4]. The evolution of the polarization ( )P t00  of 

the nuclei 8Li is directly observable via measurement of the beta-decay asymmetry (-NMR). 
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We use here the simplest transition rates (7) for the problem of spin polarization transport in order 
to concentrate our attention on specifics of random walks in disordered media. Quantitative 
comparison with experimental results requires to take into account that transition rate wzx  depends as 

well on the orientation of x z  relative to external static magnetic field, on correlation of local fields 
on donor spins and on difference in spin values of 8Li and 6Li [4]. 

The problems of calculation of the propagator (4) or memory kernels ( )N txz  in corresponding 

master equation 

  
0

( ) ' ( ') ( ') ( ') ( ') ,
t

P t dt N t P t t N t P t t
t


    

 x0 zx x0 xz z0z
   ( 0)P t  x0 x0  (8) 

belong to the most complex problems of modern statistical mechanics and they have not adequate 
analytical solution up to now. Nonseparable version of CTRW theory, developed by Scher and Lax in 
two articles [2], produced an integral representation for approximate solution of the problem and 
extended previously developed separable CTRW of Montroll and Weiss [9] (which operated with 

kernels of the form: ( ) ( )N t X Y t zx zx x ).  

CTRW is the abbreviation of continuous time random walks. The meaning of the expression 
consists in following. If the excitation is placed at site x , then its escape, according to Eqs. (1)-(3), is 

described by the law  ( ) exp /Q t t  x x
 , with one characteristic hopping time   1

n w


 x z zxz
, 

while the Eq. (8) corresponds to the escape law with 
0

( ) / dt ' ( ') ( ')
t

dQ t dt N t Q t t  x zx xz
 and its 

result can be written as  ( ) exp / ( )Q t d t W   x x  with continuous distribution of times ( )W x . 

The Scher-Lax theory was directed on calculation of frequency dependent diffusion  
(or conductivity), which are defined by 

 2 2( ) ( )t P t x0x
x x , 

and it produced important progress in the field at that time. But the theory was ineffective in 
description of other important quantity, survival probability (or autocorrelation function) ( ),P t00  which 

is directly measurable in fine optical [10, 11] and beta-NMR [4, 12] studies. Other important property 
- conceptual foundation of the relations between “microscopic” equations (1)-(3) and master equations 
(8) is still unrecognized by absolute majority of workers, that is clearly seen from legend about the 
derivation of the master equation which exists 37 years and passed in erroneous form throgh many 
reviews, see for example [13, ch.5] and [14]. 

The aims of this article consists in explaining of nonseparable version of CTRW, constructed by me 
and my colleagues for qualitatively correct description of the autocorrelator ( )P t00  in problems of dipole 

hopping transport, in improvement of some details of the theory, in short description of corresponding 
modern numerical and experimental results and in concentrated clarifying of those connections of the 
master equations (8) with primary equations (1)-(3), which are fundamentally important for correct 
calculation of the ( )P t00  and for the problem of random walks on disordered sites as a whole. We 

resume our experience of construction and application of the CTRW theory in the Section 6 with some 
differences relative to “incredible possibilities of the CTRWs” indicated in Ref. [14]. 

2. Reformulation and generalization of the CTRW theory 

The method of approximate construction of the propagator ( ),P tx0  developed in Ref. [2], was 

reformulated in [15, 16] (see also [17, 18] for different approach) basing on the following assumptions: 

a) the first term in square brackets in (8) is the rate of polarization outflow from x  to z , while the 
second term is the rate of inflow from z  to ;x  
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b) inflow rate from z  to x  does not depend on how the polarization reached .z  

The processes of inflow to the site and outflow from it are now separated, and to determine the kernels 
( )N tzx  we can treat the simple case in which an exact averaging can be carried out. For this purpose, 

we choose the process of the outflow of polarization from an arbitrary site in exactly solvable problem 

 ,F n w F
t


 

 xx z zx xxz
     ,F n w F

t 



 z x z zx xx
   (9) 

 0 0( ) / , ( ) 0.F t t n c F t t   zx z zx zx
    

According to the assumptions above, the average ( ) ( )F t F tzx zx
  must satisfy the equations 

 
0 0

( ) ( ) ( ), ( ) ( ) ( ),
t t

F t dt N t F t t F t dt N t F t t
t t 
          
  xx zx xx z x zx xxz

 (10) 

 0 0( ) , ( ) 0.F t t F t t   zx zx zx   

As a result, the equation for the kernel ( )N tzx  obtains the form 

     
0

( ) exp exp
t
dt N t n w t t n w n w t       zx q qx z zx q qxq q

 (11) 

with 

      exp exp ln 1 1 ,w tn w t c e     qx

q qxq q
 (12) 

      exp exp ln 1 1 .w tw tn w n w t cw e c e     qxzx
z zx q qx zxq q z

 (13) 

The Eqs. (8) and (11) give qualitatively satisfactory description of those properties of the hopping 

conductivity and delocalization of excitations, which are related with 2 2( ) ( ),t P t x0x
x x  but, as it 

is demonstrated in the next section, they are erroneous in the description of the autocorrelator ( ),P t00  

which is directly measurable in the optical [3, 10, 11] and beta-NMR [4, 12] experiments. 

3. Main weakness of the Scher-Lax CTRW theory 

In order to sharpen the problem we can consider the continuum media approximation, when impurity 
concentration 0c   and lattice prime cell volume 0  at a fixed value of impurity density 

/n c  . In the continuum media approximation the Eqs. (8) obtain the form 

  3

0
( , | ) ( ') ( , ' | ) ( ') ( , ' | )

t
P t dt d z N t P t t N t P t t

t

      
   zx xzx 0 x 0 z 0   

 3

0
 ( ) ( , ' | ), ( , 0 | ) ( ),

t
dt d z Z t P t t P t        xz z 0 z 0 x   (14) 

where ( ) x  is Dirac’s delta-function, the probability density ( , | ) ( ) /P t P t x0x 0  has normalization 

3 ( , | ) 1d xP t  x 0  and the kernels can be written as 

 
0

( ) ( ) ( ) / ( ),tN dte N t nw Q w Q  
   zx zx zx zx  (15) 

   1
3

0
( ) ( ) ( ) ,tQ dte Q t d zN  

     zx  
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        1/23( ) exp exp 1 exp .w tQ t n w t n d q e t        qx

q qxq
 (16) 

Here and below we apply the same symbols for time dependent functions and for their Laplace 

transformations distinguishing them by the argument. The Förster constant   3 2 6
0 016 / 9 n w r   is 

defined by the last equality in (16).  

The master equation (14) can be rewritten in the Laplace representation as 

  3 ( ) ( )( , | ) ( ) ( ) ( ) ( , | ) ( , | ) ( , | ),s rP Q d zN P P P          xzx 0 x z 0 x 0 x 0  (17) 

or, in the time representation 

 ( ) ( ) ( )( , | ) ( , | ) ( , | ), ( , | ) ( ) ( ).s r sP t P t P t P t Q t   x 0 x 0 x 0 x 0 x  (18) 

The solution (15) indicates that ( )N xz  is a smooth function of ,x z  therefore Eqs. (17) and (18) 

separate the propagator on singular ( ) ( , | )sP tx 0  and regular ( ) ( , | )rP tx 0  parts near 0.x   At that, the 

singular part is defined only by the singular part of the memory kernel ( ) 3( ) ( ) ( )sZ t d qN t xz qxx z  of 

the Eq. (14). 

Simple analysis indicates, that for long time 

 2 3 2 2/3( )  ( , | ) ,t d x x P t n t x x 0  (19) 

that is in agreement with scaling arguments [1, 19] and expected for diffusion long time asymptotics. 

But the solution ( )
0( , | ) ( ) ( )sP t F t x 0 x  with 0 ( ) ( )F t Q t  is incorrect [1, 11, 15, 16]. It decays with 

time exponentially, while more slow behavior, diffusion like as   3/2

0 ( )F t t   should be expected, 

because 0 ( )F t  is the survival probability, and it should be of the order of probability 1( )F t  to find the 

excitation on a donor, placed near the origin, that is 

   3/23 1/3 ( )
1 3/22

1 1
( )  ( ) ( ) .

( )

rF t d x x n P t t
n x t

         x0   (20) 

Here Heaviside's function ( )x  is applied. 

The relations (17) and (18) indicate, that correct 0 ( )F t   can be obtained if the  

singular part of the memory kernel ( ) ( ) ( ) ( )s
DZ t Z txz x z  has correct long time tail 

  3/2

0 00( ) ( ) / ' ( ')DZ t F t dt F t t       [16]. This conclusion contradicts to main strategy of 

application of the memory functions method when reasonable approximation for short-term memory 
kernels produces satisfactory long time behavior for the solution of master equation (that was fulfilled 
in the relation (19) for example). Therefore, we should look for justification of the applicability of the 
memory function method (i.e. Eq. (8)) and for modification of the memory kernels. 

4. Correction of the CTRW theory 

The justification of the applicability of the memory function method can be based on derivation of the 
Eq. (8) applying the Nakajima-Zwanzig projection operator technique to Eqs. (2) or (3). Similar 
attempt was undertaken in Ref. [20] for Eqs. (2) choosing the projection operator ̂  as simple 

averaging ˆ A A   for any .A  But initial condition was applied in incorrect form ( 0) ,P t  x0 x0
  

therefore all equations, derived in [20], are incorrect [21]. Nevertheless, authors of reviews [13] and 
[14], as well as more than three hundreds other workers insist that the Ref. [20] gave convincing 
derivation of the master equation (8) ignoring the criticism of the Ref. [21]. It should be noted 
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nevertheless that similar derivation can be fulfilled both for Eqs. (2) and (3) with correct initial 

condition ( 0) /P t n c x0 x x0
  applying other projection operator 

 ˆ .x

n
A A

c
  x

x  (21) 

Unfortunately, the results of these derivations produce no indication on the way to improve the 
singular part of memory kernels. 

More constructive approach was realized in Refs. [15, 16, 21], see also [22]. Correct initial 

condition ( 0) /P t n c x0 x x0
  separates only those solutions of the Eqs. (2) and (3), for which the 

lattice site r 0  is occupied by a donor, because the identity ( ) (1)n R n n Rx x x  is valid for any 

reasonable function ( ).R nx  Therefore, 

      
0

( ) exp exp ,
n

P t At At
c

   0
x0 x0 x0

 (22) 

where 
0

    means averaging over occupation numbers with the condition 1n 0 . Therefore, we can 

apply the projector 0̂   acting as 

 0 0
B B    (23) 

for any B . Standard transformations produce the Eqs. (8) and (14) again, but the memory kernel 
(0)( ) ( )N t N tzx zx  depends both on z x  and x x 0  , while the propagator ( )P tx0  depends on x  

only. This new type of memory (geometrical, contrary to dynamical one, which depends on z x  

only) is much less comfortable for calculations, because the matrix (0) ( )N tzx  can not be diagonalized by 

the Fourier transformation. Nevertheless [15, 16], equations for the memory kernels can be 
constructed following the derivation (9)-(13) with the result: 

    
    (0)

0

exp
' ( ') ' ,    ,

1 exp 1

t cw w t
dt N t Q t t Q t

c w t


  

   0 0zx zx
zx x x

zx

z 0  (24) 

       (0) (0)( ) ( ),    exp 1 1 .w tw
N t N t Q t w t c e

cw


 
       zx00x

0x x0 x zxz 0 z 0
x0

 

Details of the derivation (with taking into account additional exactly solvable model) can be 
found in Ref. [16]. 

As a result, the Eqs. (8) with short-term memory (24) produce qualitatively well-formed solution 

( )P tx0  for all x  and ,t  and the solution is correct up to terms 1c  [15, 16]. It should be noted, that 

last property was not fulfilled in [2]. 

5. Approximate solution to corrected CTRW equations 

Analytical solution of the Eqs. (8) with kernels (24) is absent. Therefore approximate solution for 

 P t00  was constructed by matching the short- and long-time asymptotics. Analysis of long-time 

asymptotics [15, 16] indicates, that for dipole transport 

    11
( ) ( ) 1 ,P t G t O t

c
     00 00  (25) 

where ( )G tx0  is the solution of Eqs. (8) with kernels (11). It can be obtained using the lattice Fourier 

transformation. For t    
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 

      13
3( ) exp ( ) ( ) 1

2 B
G t d k N N t O t




   00 0 k , (26) 

where integration is limited by the Brillouin zone and 
0

( ) ( ).iN e dtN t
  kx

x0x
k  The asymptotics 

( )G t 00 , according to the Laplace's method, is defined by ( 0)N k . In simple lattice with cubic 

symmetry and for dipole transition rates (7) we have 

 2 3 4( ) ( ) ( )N N Dk k O k   0 k . (27) 

Simple derivation of this expansion can be found in Ref. [23].  

The diffusion coefficient D  is model dependent, and its value for Scher-Lax theory in continuum 
media approximation is  

    
3/2 2/3

4/3 6 2/3
0 0 7/3

2
1 / 6 5 / 3

3 6
SL

SLD n w r n
       ,  (28) 

where 0.3725SL  , while 
2

6
0 012

n
w r

   is model independent and it is defined by the dipole long 

ranging exclusively. For example, if we will assume in Eqs. (15) and (16) that   ( ) expaQ t t
   with 

arbitrary 0   and 0   instead of   1/2
( ) expQ t t  , prescribed by the relation (16), then we will 

obtain other value for the diffusion coefficient but the same 
2

6
0 012

n
w r

  . As a result, in leading terms,  

 
       3/2 1/2 3/2 1/23/2

1 4 1
( ) 1 1 ,

4
P t

n Dt D t t t

 
   

   
           

   
00  (29) 

where 0.7801   and 1.923  .  

Short time asymptotics was obtained in Refs. [1, 3, 21, 24]: 

  1/2
( 1) 1 / 2 ( ),P t t O t     00  (30) 

and the next term   3/2
( )O t d t O t     was defined in [21] by calculation of the coefficient d  

basing on exact expansion of the propagator in powers mc  of the concentration.  

These results allow to construct the approximation 

 
     3/2 1/2

1 ( )
( ) ( ) 1 ,

Q t
P t Q t

t t


   

     
   

00  (31) 

which reproduces the relation (30) up to  1/2
t  and both terms of the asymptotics (29) with 

3.613   [11, 16].  

The coefficients   and   prescribe specific evolution of ( )P t00  relative to its long time asymptote 

  3/2
( )aP t t  . At the beginning ( ) ( )aP t P t00 , but with increasing of time we have opposite relation 

and at t   they coincide. This property (reoscillation) was applied in the Ref. [11] to clarify, that, 

in agreement with Eq. (31), the onset of the diffusive asymptotic behavior in the kinetics of the 
electodipole delocalization of excitations in a disordered system of donors takes place at ( ) 0.03.P t 00   

Consequent numerical [25, 26] and experimental (beta-NMR) [27, 28] studies revealed, that  
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a) for small concentrations (i.e. for strongest disorder) the diffusion coefficient is 2/30
0 6

D n
    

with 0 =0.296 , this is not very far from 0.3725SL   in the relation (28), and  

b) for 0.1c   and for all t  autocorrelator ( )P t00  is of the form 

  00 00( ) ( ) 1 ( ) ,P t F t t   (32) 

where 00 ( )F t  is defined by the relation (31) with more correct diffusion tensor (or coefficient, for 

isotropic transfer) and variation ( )t  is relatively small ( 0.1 ( ) 1t   ). The variation increases the 

reoscillation. It should not contain the short- and long-time asymptotic terms, included in the relation (31). 

According to the relation (29), for recalculation to new value of the diffusion coefficient, the 
relation (31) can be written as 

 
     00 3/2 1/2

1 ( )
( ) ( ) 1 SLQ t D

F t Q t
Dt t


   

      
   

 (33) 

in order to apply the same value .  The multiplayer /SLD D  was forgotten in preceding studies, but it 

did not produced errors in description of results of numerical studies, because 1) for approximations of 
the numerical results the relation (32) was applied as a whole with the fitting function ( )t , and 

corresponding errors was compensated by ( )t , and 2) for studied values of D  with corresponding 

  the relative inaccuracy in calculation of 00 ( )F t  never exceeded 0.05. Nevertheless we should 

expect that the correction will become important with increasing of accuracy of theoretical and 

experimental studies, because it allows to exclude the term   1/2
t   from the fitting function ( )t . 

6. Conclusions 

As a whole we see, that the version of CTRW, invented in Ref. [2] and improved in Refs. [15, 16], 
produced important part of the basis for consequent quantitative understanding and experimental 
investigations of the problem of random walks in disordered media with dipole transitions. It should be 
noted, that this approach allowed for the first time to obtain analytically correct diffusion  

long-time asymptotics for autocorrelator   3/2
( ) ,P t t 

00   while other methods (see, for example, 

Refs. [3, 24, 29]) produced reasonable behavior at 1t  , but exponential long time tail. Diffusion long 

time tail can be obtained for coarse-grained propagator, as in the Ref. [30], this is evident from the relation 
(20), but it produces no direct information for comparison with precise optical and beta-NMR studies.  

We can state, that the CTRW theory was more successful in the description of dipole processes, 
than for hopping conductivity, where the percolation theory is more applicable. Indeed, CTRW and 

the relation (28) produce correct dependence of the diffusion coefficient 4/3 4/3( )D c c n   for dipole 

transport in continuum media approximation, but, according to modern knowledge [31], in the 

problem of hopping conductivity  1/3exp /p cD   , where 3
0

4
1

3c nr
    and the constant 1p   

is produced by the percolation theory, while CTRW gives other parametric dependence 

 1/2exp /SL SL cD D     with 1SL   [2, 17] (see the Appendix). 

It should be noted, that all numeric parameters, indicated in this article for dipole transport, are 
valid for simplified transition rates (7) only. Results for more realistic description can be found in 
Refs. [4, 28]. 

Eqs. (1) and (7) are popular in explaining of dipole transport even in the systems, where the 
conditions of their applicability, indicated after the Eq. (7) are nor fulfilled. It is natural, that, for these 
systems, results of the CTRW can be applicable for rough qualitative estimations only. 
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Appendix. Diffusion coefficients in CTRW theory 

Short derivation of the diffusion coefficient for the conductivity problem in continuum media 
approximation is, probably, absent in existing literature. Therefore, we will give it below.  

According to relations (14) and (15) (or (26) and (27)) the diffusion coefficient in the Sher-Lax theory is  

  2 2
0 0 00 0

1
 ( 0)  exp ( ) / ( )

2 2
d d

SL

n
D d x x N d x x w dt w t Q t dtQ t

d d


 
      x x x  (A1) 

or 

  2
0 00 0

( )  exp / ( ).
2

d
SL

n
D dtQ t d x x w w t dtQ t

d

 
   x x  (A2) 

Here d  is dimension of the space and the continuum media approximation is applied. 

For dipole transport and 3d   we have, according to (16),   1/2
( ) exp ,Q t t   and 

0
( ) 2 / .dtQ t 


  Then using (A2) and substituting  1/66

0 0x y w r t  we obtain  

    
3

5/66 6
0 04 0

exp 1/ ( )
3SL

n d y dt
D y Q t w r t

y t


    

that directly produces the relation (28), which is exact in continuum media approximation. Similar 
result was found in Ref. [18]. 

Calculations for hopping conductivity with 0 0exp( / )w w x r x0  are much more complex. In order 

to obtain the main approximation for 0 1w t   we can substitute [2] 

    1 exp 1w t w t   x0 x0 . (A3) 

As a consequence, in continuum media approximation, 

     3 3 3
0 0 0

4
( 1) exp 1 exp ln .

3
w tQ w t n d x e nr w t

       
  x0  (A4) 

For reasonable approximation at all 0w t  this relation can be written as 

   3
0( ) exp ln 1cQ t w t    (A5) 

that it is correct in main order for small 3
0

4
1

3c nr
   . Therefore  

        3 3 3 1/2
0 1/20 0 0 0

0 0

( ) exp ln 1 exp exp / .c c c
c

ds dy
dtQ t dt w t s s y y

w w
  


   

           (A6) 

where 0ln(1 ).s w t   Last integrand has sharp maximum at  1/2 1/2 1/2
0ln 1 3 ,c cy s w t       that 

corresponds to exponentially large 0 ,w t  justifies preceding approximations and produces (with 

exponential accuracy)  

   3/2 1/2

0
0

1
( ) exp 2 / 3 cdtQ t

w




  . (A7) 

The preexponent is written here to obtain correct dimensional dependence only. 

It is evident that 

  3
0 00 0

( )exp ( ) 1.
d

n d xw dtQ t w t dt Q t
dt

 
     x x  (A8) 
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From other side  

 
   

 

3 3
0 0 0 00 0

3
0 00

( )exp ( ) exp

( ) exp .y
c

n d xw dtQ t w t n dtQ t d xw w t

w dtQ t dy y w te

 

 

   

  

   

 

x x x x

 (A9) 

Last integrand has sharp maximum at 0 0 0 0 0( ) ( ) / ln ln(1 ),y y t x t r w t w t      and asymptotic 

expansion in small parameter c  near this extremum will restore the identity (A8). Calculation of the 

diffusion coefficient according to the relation (A2) will produce additional factors 2x  and 2y  in the 

last integrands of (A9), which can be substituted by 2
0 ( )x t  and 2

0 ( )y t  correspondingly. As a result,  

 

   

 

     

    

0

3
0

3 2 3 2
0 0 0 00 0

/3 2
0 0 00

2 2 3 2 2
0 0 0 0 0 00 0

ln 12 2 2 2/3
0 0 00

 ( )exp  ( )  exp

( )  exp /

( ) ln 1 exp ln 1 ( )

ln 1c

x r

w t
c

n d x x w dtQ t w t n dtQ t d x x w w t

nw dtQ t d x x x r w te

d
r dtQ t w t n d xw w t r dt w t Q t

dt

r de w t r 

 

 

 

   

   

   

      

  

   

 

  



x x x x

x x

 .

 (A10) 

Therefore, according to the relations (A2), (A7) and (A10), we obtain that for hopping conductivity  

   2 3/2 1/2
0 0 exp 2 / 3 .SL cD r w   (A11) 

Similar result can be found in Refs. [2, 17]. 

The relation (A11) is written with exponential accuracy only, that is sufficient to clarify its sharp 
contradiction with the result of the percolation theory.  
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