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g-tensor components for a Kramers doublet of an impurity ion doped into dielectric crystal are 
expressed through coefficients of expansion of the doublet wavefunctions in the basis of full 
momentum of the impurity ion taking into account isotropic reduction of orbital momentum in 
Zeeman energy due to covalence. Mixing of terms and multiplets of the impurity ion is considered 
rigorously in the expansion of doublet wavefunctions. The obtained expressions can be useful in 
calculations and analysis of g-factors dependence on the impurity ion Hamiltonian parameters. The 
derived formulas are applied to calculation of g-factors of the ground Kramers doublet of Ce3+ ion 
doped in LiYF4 crystal. It is shown that considering reduction of orbital momentum of the 4f electron 
of the Ce3+ ion in Zeeman energy can significantly improve agreement with experimentally measured 
g-factors for this compound, available in literature. 

PACS: 75.10.Dg, 76.30.-v 
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1. Introduction 

This research was stimulated by theoretical investigation of 4f crystal field parameters and 
g-factors of the ground Kramers doublet of Ce3+ ion doped in LiYF4 crystal which we conducted 
earlier [1]. Impurity Ce3+ ions substitute for Y3+ ions in LiYF4 crystal in sites with S4 point 
symmetry, in the nearest surrounding of the Y-site there are eight fluorine ions which form two 
deformed tetrahedrons. Safe values of crystal field parameters for the Ce3+ ion in LiYF4 crystal 
are absent in literature due to difficulties in measuring of 4f crystal field energies for this 
compound. However, g-factors for the ground level of the Ce3+ ion in LiYF4 crystal are known in 
literature [2]. In [1] we considered the Zeeman energy  

  Ze B 2 ,H  S L H  (1) 

where H  is magnetic field, B  is the Bohr magneton, S  and L  are dimensionless spin and orbital 

angular momentum of the Ce3+ ion 4f electron. We found that no reasonable set of 4f crystal field 
parameters can satisfactorily fit the g-factors values of the Ce3+ ion ground Kramers doublet measured 
in [2], even if we rigorously consider mixing of the 2F5/2 and 2F7/2 Ce3+ ion multiplets by crystal field. 
We suggested in [1] that it is necessary to consider reduction of the orbital momentum of the 4f 
electron in the Zeeman energy due to covalency effects, to achieve better agreement with experiment. 
Let us note, as an argument in favor of considering covalency effects, that the effective ionic radius of 
the Ce3+ ion is the largest for trivalent lanthanide ions, it amounts 1.143 Å and is bigger than the ionic 
radius of the Y3+ ion (1.019 Å) [3]. 

In the present study we consider the following rather general case: an impurity ion with an odd 
number of electrons in lattice crystal field, which can be of an arbitrary point symmetry, but energy 
level under consideration is a Kramers doublet. We aim to consider rigorously mixing of impurity ion 
electronic states by crystal field, therefore we consider expansion of the Kramers doublet 

wavefunctions 1 , 2  in the basis of full momentum taking into account all terms and multiplets 

of the impurity ion electronic configuration: 

Short cite this: Magn. Reson. Solids 19, 17208 (2017) 
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 1 ,SL
JM

SLJM

a SLJM



    (2) 

   *

2 1 ,
ˆ 1 ,

J M SL
J M

SLJM

a SLJM



   
    (3) 

where ̂  is the time reversal operator; quantum number   allows to differ terms with equal spin and 

orbital momentum quantum numbers S and L; J  and M are quantum numbers of the full momentum 

of the ion with the usual meaning; complex coefficients SL
JMa  satisfy the normalization condition.  

In many papers only mixing of electronic states within the same multiplet is considered; for example, as 
for LiYF4:Ce3+ crystal, only mixing of states within the ground 2F5/2 multiplet was considered in [4,5]. 

We consider the Zeeman energy  

 Ze B ,H  mH  (4) 

 ,Sg k m S L  (5) 

where k is isotropic reduction factor for the orbital momentum, Sg  is taken as 2.0023 in calculations. 

Approximation of isotropic reduction factor was introduced in [6] for Tm2+ ion doped in CaF2 crystal. 
A more rigorous analysis of covalent binding by molecular orbital method leads to different reduction 
factors for orbital momentum matrix elements on wavefunctions, transforming according to different 
irreducible representations of the impurity ion point symmetry. For example, as for Tm2+ ion in CaF2 
crystal (cubic point symmetry), two reduction factors have been introduced and calculated in [7,8].  
In the case of strong covalent binding (nd transition metal ions) reduction factors can sufficiently 
differ from 1 and from each other for different matrix elements of orbital momentum. However, for 
the 4f electrons of impurity rare-earth ions covalent binding is small, with reduction factors exceeding 
0.95, therefore, we can neglect difference between their values and consider isotropic reduction of 
orbital momentum (5) as an approximation in estimation of its matrix elements. 

In the basis of the Kramers doublet states (2), (3) the Zeeman energy can be represented by the 
effective spin Hamiltonian 

 eff eff
Ze B

,

,H H g S  
 

   (6) 

where   and   denote Cartesian axes; effS  is the effective spin operator with 1 2S  ; g  are 

components of the g-tensor, which are determined by matrix elements of Cartesian components of the 
m operator (5) on the Kramers doublet states as follows: 

 1 2 1 2 1 12Re , 2Im , 2 .x y zg m g m g m               (7) 

As follows from the above formulas, the set of coefficients SL
JMa  determines Kramers doublet 

wavefunctions (2), (3) and, consequently, values of g-tensor components (7). We find it useful to 

express g-tensor components explicitly through the SL
JMa  coefficients both for calculative reasons and 

as a tool for analysis of g-tensor dependence on the impurity ion Hamiltonian parameters. 

Thus, the purpose of the present study is to establish formulas that would express g-tensor 

components for a Kramers doublet with account of orbital momentum reduction through the SL
JMa  

coefficients; as an example of application the derived formulas are used in calculation of g-factors of 
the ground Kramers doublet of the Ce3+ ion in LiYF4 crystal.  

The paper is organized as follows. In section 2 we derive formulas for g  expressed through the 

LS
JMa  coefficients that determine the wavefunctions (2), (3) of the Kramers doublet under 
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consideration. In section 3 a particular case of tetragonal local symmetry for the impurity ion is 
considered. In section 4 a particular case of electronic configuration nl1 of the impurity ion is 
considered. Finally, in section 5 we calculate g-factors for a specific system – the Ce3+ ion in LiYF4 
crystal – and compare results with the known experimental values [2]. 

2. Formulas for g-tensor components expressed through SL
JMa  coefficients 

For the sake of generality let us consider matrix elements of Cartesian components of the m operator 

(5) between the state 1  (2) and an arbitrary state   defined by the following expansion with a set 

of coefficients SL
JMb : 

 .SL
JM

SLJM

b SLJM



    (8) 

We find it convenient to carry out such transformations that allow to calculate the least possible 
number of different matrix elements in the right part of the following equation (note that states of the 
same term SL  appear in matrix elements according to selection rules): 

 
*

1 ' '
' '

' ' .SL SL
JM J M

SLJMJ M

m a b SLJM m SLJ M 
 



      (9) 

For example, it is sufficient to consider only the case 'J J  in (9), as simultaneous substitutions 
', 'J J M M   give the term under the sign of summation in (9) 

   *' '

', ' ,1 ' ' .
J J M M SL SL

J M J Ma b SLJM m SLJ M 
   

   (10) 

To obtain (10) one should use the equation 

   ' ' 1
' ' 1 ', ' , ,

J J M M
SLJM m SLJ M SLJ M m SLJ M            (11) 

which is actually valid for any time-odd Hermitian operator. 

Utilizing (10) we obtain for the z component of operator m 

 

 

*
1

* *
1, 1, , , 1, .

SL SL
z JM JM z

SLJM

SL SL SL SL
JM J M J M J M z

m a b SLJM m SLJM

a b a b SLJM m SL J M

 



   

   

    

 

   


 (12) 

Property (11) allows to transform the following sum for the x and y components of operator m  

 



  

' ' , ' , 1 ,
{ , '} , , ' { , '} ,

*'

', ,1 ,

' ' ', 1

1 ', 1 ,

SL SL
JJ MM x y JJ M M x y

J J D M M J J D M

J J SL
JJ M M x y

C SLJM m SLJ M C SLJM m SLJ M

C SLJM m SLJ M

 



   

 


 


 

  

  

 
 (13) 

where ' '
SL

JJ MMC   are some numerical coefficients, quantum numbers , 'J J  take values from some fixed set D. 

Let us apply (13) to calculation of matrix elements 1 ,x ym  : for 'J J  in (9) we apply (13) with  

 
*

' ' ;
SL SL SL

JJMM JM JMC a b    (14) 

for 'J J  in (9) we apply (13) with  

  * *' '

' ' ' ' ', ' ,1 ,
J J M MSL SL SL SL SL

JJ MM JM J M J M J MC a b a b      
     (15) 

according to (10). Thus we obtain, omitting quantum numbers SL  in the matrix elements for brevity: 
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  

 

** *
1 , , 1 , , ,1 ,

* *
1, 1 1,1 , ,

** *
1, 1 , , 1,1 ,

, 1 , 1

1, 1

1, 1 .

SL SL SL SL
x y JM J M x y J M J M x y

SLJM

SL SL SL SL
JM J M J M J M x y

SL SL SL SL
J M J M J M J M x y

m a b JM m J M a b JM m J M

a b a b JM m J M

a b a b JM m J M

   



   

   

    

    

    

    

    

    



 (16) 

Note that formulas (12) and (16) are valid for Cartesian components of any time-odd Hermitian 
vector operator with matrix elements diagonal in quantum numbers SL . For time-even Hermitian 

vector operator analogous formulas can be derived, but terms, which include coefficients with indices 
M  or 1 M  (or both), will appear with the opposite signs. 

Calculating matrix elements diagonal in J  in (12) and (16) we can substitute m  by equivalent operator  

  L ,g SLJ J  (17) 

where  Lg SLJ  is the Lande g-factor modified with account of orbital momentum reduction: 

        
L

1 ( 1)1
.

2 2 ( 1)S S

S S L L
g SLJ g k g k

J J

  
   


 (18) 

Calculating matrix elements in (12), (16) between multiplets with different ,J  we can substitute 

m  by equivalent operator   .Sg k S  On the basis of the standard formula of algebra of irreducible 

tensor operators [9] (with Wigner notation for 3j- and 6j-symbols) 

 

      

 

21

1

1 1
, 1, ' 1 2 1 2 1

'

1 1
|| ||

J S L M

q

J J
SLJM S SL J M J J

M q M

J J
S S S

S L S

      
       

 
   
 

 (19) 

we can write 

   2 21
, 1, ,

2zSLJM S SL J M SLJ J M      (20) 

     1
, 1, 1 1 ,

2
SLJM S SL J M SLJ J M J M           (21) 

       
  2

1 1
.

2 1 2 1

L S J S L J L S J L S J
SLJ

J J J


         


 
 (22) 

Thus we can write explicit expressions for matrix elements of m  operators with the use of 

coefficients  Lg SLJ  (18) and  SLJ  (22): 

      * 2 2 * *
1 L 1, 1, , ,

2
SL SL SL SL SL SLS

z JM JM JM J M J M J M
SLJM

g k
m g SLJ Ma b SLJ J M a b a b     



      

       (23) 

 
         

      

1 * *
L , 1 , ,1

1

* * * *
1, 1 1,1 , 1, 1 , , 1,1

1 1
1 1

2 4

1 .

x SL SL SL SL
JM J M J M J M S

SLJMy

SL SL SL SL SL SL SL SL
JM J M J M J M J M J M J M J M

m
g SLJ J J M M a b a b g k

i m

SLJ J M J M a b a b a b a b

   



       

 
 



  

         

            

      





 (24) 

Here and further in this section upper signs, if any, are taken for x-axis, lower signs – for y-axis. 



A.S. Dudalov, O.V. Solovyev 

Magnetic Resonance in Solids. Electronic Journal. 2017, Vol. 19, No 2, 17208 (10 pp.) 5 

Now let us consider matrix elements of m  operators on the Kramers doublet states (2), (3). 

Expressions for diagonal matrix elements can be obtained from (23), (24) by simply putting :SL SL
JM JMb a   

        2 2 2 *
1 1 L 1,Re ,SL SL SL

z JM S JM J M
SLJM

m g SLJ M a g k SLJ J M a a  



   
       (25) 

 

       

        

1 1 *
L , 1

1 1

* *
1, 1 1,1 ,

Re
1 1

Im

Re1
1 .

Im2

x SL SL
JM J M

SLJMy

SL SL SL SL
S JM J M J M J M

m
g SLJ J J M M a a

m

g k SLJ J M J M a a a a

 



   

 
 





    

    
        

  

 
       

  


 (26) 

Note, that 2 2 1 1m m       for the time-odd operator. Expressions for the non-diagonal 

matrix elements on the states 1  (2) and 2  (3) of the Kramers doublet can be obtained from (23), 

(24) by putting   *

,1
J MSL SL

JM J Mb a 
  : 

 

   

     

*

1 2 L ,
0

2 2
1,

2 1

1 ,

J M SL SL
z JM J M

SLJ M

J M SL SL
S JM J M

M

m g SLJ Ma a

g k SLJ J M a a

 



 

 









 


  



    

 


 (27) 

         

       

          

*
1

1 2 2 22
L ,1/2 , 1/2*

1 2

,1 , , 1
1/2

1,1 , 1, 1

1
1 1 1 1/ 4

2

2 1 1 1

1 1

Jx SL SL
J J

SLJy

M SL SL SL SL
JM J M J M J M

M

J M SL SL SL SL
S JM J M J M J M

M

m
g SLJ J J a a

i m

J J M M a a a a

g k SLJ J M J M a a a a

 



   

   

 

 





  



    

               


     



      











.



 (28) 

Of course, 
*

2 1 1 2m m     . Let us also note for completeness that matrix elements for 

ym  in (24), (26), (28) can be obtained directly from matrix elements of the xm  operator by rotating 

corresponding wavefunctions by the angle of / 2  around z-axis; in the basis SLJM  this is 

equivalent to transformation of the wavefunctions expansion coefficients  exp 2 ,SL SL
JM JMa a iM    

 exp 2SL SL
JM JMb b iM   . 

Calculated matrix elements of the m  operators (25)–(28) on the Kramers doublet states (2), (3) 

allow to find components g  of the g-tensor according to (7). Rotating Cartesian axes and making 

unitary transformation in the two-dimensional space of the Kramers doublet states we can always 
bring the g-tensor to diagonal form (we refer to diagonal components as g-factors). In the following 
section we show that for a particular case of tetragonal symmetry of the impurity ion Hamiltonian. 

3. Formulas for g-factors in the case of tetragonal crystal field 

The derived formulas (25)–(28) for g-tensor components may be greatly simplified in the case of 
tetragonal symmetry of the lattice crystal field. If z-axis is chosen as the tetragonal symmetry axis, and 

if expansions (2), (3) of the Kramers doublet wavefunctions 1 ,  2  are obtained by 

diagonalization of Hamiltonian, which includes spin-orbit and Coulomb interactions and interaction 
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with crystal field, in the basis of full momentum ,SLJM  then coefficients SL
JMa  in (2), (3) can be 

nonzero only for M values that differ by each other by an amount of 4 ,p  here and further p  is integer. 

Therefore, as seen from (26), (27), 1 2 0,zm    1 , 1 0x ym    and, consequently, according to (7): 

 0.xz yz zx zyg g g g     (29) 

Note, that (29) will be valid for z-axis being the symmetry axis of the second order already. 

Moreover, by appropriate numbering of 1 ,  2  states we can always obtain nonzero 

coefficients SL
JMa  in (2) only for 01/ 2 2 4M p p   , where 0p  equals either 0 or 1 (note that 

expansion (3) of 2  will contain terms only with 01/ 2 2 4M p p     in this case). Therefore, in 

(28) the second terms in all three parentheses will vanish, leading to equality 

1 2 1 2 .x ym i m     The latter means that by appropriate choice of complex phase of the 

wavefunction 1  the g-tensor will be directly brought to diagonal form with components 

xx yyg g g  , ||zzg g , where g-factors derived from (25), (28) equal 

 

  

       

0

0 0

2

|| L 0 ,1/2 2 4

22 *
0 ,1/2 2 4 1,1/2 2 4

2 1 / 2 2 4

1/ 2 2 4 Re ,

SL
J p p

SLJp

SL SL
S J p p J p p

g g SLJ p p a

g k SLJ J p p a a





 

 

    

   

     


 (30) 

 

   

   

     

0 0

0

0 0

2
L ,1/2

2

0 ,1/2 2 4 ,1/2 2 4
/2

2

0 ,1/2 2 4 1,1/2 2 4

1 1 / 4

2 1 1 / 4 2 4

2 4 1 / 4 .

SL
J

SLJ

SL SL
J p p J p p

p p

SL SL
S J p p J p p

p

g g SLJ J J a

J J p p a a

g k SLJ J p p a a





 

 



   


    

     


     




     









 (31) 

4. g-tensor components in the case of impurity ion electronic configuration nl1 

In the case of electronic configuration nl1 of the impurity ion there is only one term L l , 1/ 2S   

with two multiplets 
1

2
J l  . Wavefunctions ,J M  of the multiplets components can be expressed 

through the one-electron wavefunctions ,lm  , where lm  and   denote magnetic and spin quantum 

numbers of the nl electron (below   values are denoted simply as ‘’ and ‘’), with the use of 
tabulated Clebsch-Gordan coefficients: 

 
,

1 1 1 1
, , , , , , , ,

2 2 2 2

1 / 2 1 1/ 2 1
, , .

2 1 2 2 1 2

l

l l
m

l M l m l l M m

l M l M
M M

l l



    

  
     

 




 (32) 

Coefficients  Lg SLJ  (18) and  SLJ  (22) for configuration nl1 take the form (here and further 

in this section uninformative indices SL  are omitted) 

 L

21

2 2 1
Sg kl

g l
l

     
, 

 
L

2 11

2 2 1
Sg k l

g l
l

       
, 

 21

2 2 1
Sg k

l
l


     

. (33) 
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Let us consider the example of an nf electron ( 3l  ). Let us provide only formulas for the matrix 

elements 1 1zm   (25) and 1 2xm   (28) (in the case of tetragonal symmetry these matrix 

elements directly define the g-factors as has been shown in the previous section): 

 

   

 

2 2

1 1 7 5
, ,

2 2

2 *
7 5

, ,
2 2

1
6 8

7

49 4 Re ,

z S S
M M

M

S
M M

m g k M a g k M a

g k M a a

 

    


 
    

 


 (34) 

 

   

     

   

   

* 2 2 2 2
1 2 7 1 7 1 5 1 5 1

, , , ,
2 2 2 2 2 2 2 2

1

2
7 7 7 7

, ,1 , , 1
1/2 2 2 2 2

5 5 5 5
, ,1 , , 1

2 2 2 2

1

2

1
4 6 3 8

14

1 6 63 4 1

8 35 4 1

1

x S S

M

S
M M M M

M

S
M M M M

M

S
M

m g k a a g k a a

g k M M a a a a

g k M M a a a a

g k

 
 



  

  



    
           

    

  
          

 
       

  



 2

7 5 7 5
, ,1 , , 1

2 2 2 2

4 3 1 .
M M M M

M a a a a
  

 
    

 


 (35) 

5. g-factors of the ground Kramers doublet of the Ce3+ ion in LiYF4 crystal  

Spectrum of the Ce3+ ion 4f 1 configuration consists of 7 Kramers doublets – 2F5/2 (ground) and 2F7/2 
multiplets splitted by S4 symmetry crystal field induced by LiYF4 lattice. As has already been 
mentioned in introduction, g-factors for the ground level of the Ce3+ ion in LiYF4 crystal have been 
found in [2] from EPR measurements: 

 exp exp
|| 2.737, 1.475.g g   (36) 

We consider an effective Hamiltonian H  of the impurity Ce3+ ion consisting of spin-orbit 
interaction Hamiltonian 
 SO ,H  SL  (37) 

where   is a 4f electron spin-orbit coupling constant, and Hamiltonian of interaction with the S4 

symmetry crystal field (in crystallographic axes) 

 2 (2) 4 (4) 4 (4) 4 (4) 6 (6) 6 (6) 6 (6)
CF 0 0 0 0 4 4 4 4 0 0 4 4 4 4 ,H B C B C B C B C B C B C B C           (38) 

where p
kB  are crystal field parameters, satisfying the equation  1

kp p
k kB B


  ; ( )p
kC  are components 

of one-electron spherical tensor operators C(p). 

Looking ahead, we may state that it follows from calculations that the largest contribution to 

wavefunctions of the ground 4f Kramers doublet of the Ce3+ ion in LiYF4 comes from the 
5 5

,
2 2
  

states (see also expansion (32)). Let us also note that the ground doublet corresponds to irreducible 

representations 5 , 6  of the double S4 point group in Bethe notation. According to section 3 we 

choose the wavefunction 1  (2) to contain the state 
5 5

,
2 2

 (this corresponds to 0 1p   in section 3; 
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wavefunction 2  (3) then contains the 
5 5

,
2 2
  state), which is mixed by crystal field interaction 

CFH  (38) only with the states 
5 3

,
2 2
 , 

7 5
,

2 2
 and 

7 3
,

2 2
 . Thus, it is sufficient to numerically 

diagonalize a matrix 4 4  of the Ce3+ ion Hamiltonian SO CFH H H   with the following matrix 

elements, which we give here for completeness: 

 2 4 2 4
0 0 0 0

5 5 5 5 6 1 5 3 5 3 2 1
, , 2 , , , 2 ,

2 2 2 2 21 21 2 2 2 2 35 7
H B B H B B             

2 4 6 2 4 6
0 0 0 0 0 0

7 5 7 5 3 1 13 25 7 3 7 3 3 1 3 15
, , , , , ,

2 2 2 2 2 21 77 429 2 2 2 2 2 7 77 143
H B B B H B B B             

 4 2 4 6
4 0 0 0

5 5 5 3 14 5 5 7 5 6 10 6 5 6
, , , , , ,

2 2 2 2 21 2 2 2 2 21 231 429
H B H B B B       

 4 6 4 6
4 4 4 4

5 5 7 3 4 35 10 7 5 3 7 5 8 21 10 105
, , , , , ,

2 2 2 2 231 143 2 2 2 2 231 429
H B B H B B          

 2 4 6 4 6
0 0 0 4 4

5 3 7 3 10 8 10 5 10 7 5 7 3 210 5 42
, , , , , .

2 2 2 2 35 231 143 2 2 2 2 77 429
H B B B H B B          (39) 

Numerically diagonalizing the matrix with the elements (39) we obtain the wavefunction 1  (2) 

of the ground Kramers doublet of the Ce3+ ion in LiYF4; bringing 1  to the form, suitable for 

comparison with [1], we may write 

 
2 2 2

1

1 5 5 5 3 7 5 7 3
, , , , , 1 .

2 2 2 2 2 2 2 2
N

N
       

          
 

 (40) 

Utilizing the formulas (34), (35) for wavefunction (40) we obtain the following expressions for g-factors 
of the ground Kramers doublet of the Ce3+ ion in LiYF4 with account of orbital momentum reduction: 

           2 2 2

|| 2

1
6 5 3 8 5 3 4 6 Re 10 Re ,

7 S S Sg g k g k g k
N

                (41) 

       2

2
6 2 3 8 5 30 2 .

7 S S Sg g k g k g k
N

            (42) 

If we put 2, 1Sg k  , then (41), (42) transform to the formulas that we obtained earlier in [1] but 

with the opposite signs of   and   coefficients, since 
7

,
2

M  states have been taken in [1] with the 

opposite signs as compared to (32); this also results in the opposite signs of matrix elements cross 

between 
5

2
J   and 

7

2
J   states in (39) as compared to [1]. If we additionally put 0   , then we 

obtain the case, investigated earlier in [4,5], when mixing of the 2F5/2 and 2F7/2 multiplets by crystal 
field is not considered. 

We use the following crystal field parameters that were exploited in [10] in modeling of the 
interconfigurational 4f–5d absorption spectrum of the Ce3+ ion in LiYF4 (in cm−1):  

 2
0 360B  ,    4

0 1400B   ,    4
4 1240 751B i    ,    6

0 67.2B   ,    6
4 1095 458B i    . (43) 
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No direct fitting of g-factors or 4f crystal field energies has been fulfilled in [10], but signs and 
orders of magnitude of parameters (43) are in agreement with parameters obtained in literature for 
trivalent rare earth ions doped in LiYF4 crystal from fitting experimental data (see, for example, [11]). 
We also use value 625  cm−1 from [10] for the spin-orbit coupling constant, this value also being in 

agreement with the common in literature (for example, 615 cm−1 in [11] and 628 cm−1 in [12]). 
Diagonalization of matrix (39) with the Ce3+ ion Hamiltonian parameters given above leads to the 
following g-factors of the ground Kramers doublet of the Ce3+ ion, calculated without taking orbital 
momentum reduction into account [1] (i.e. for 1k   in (41), (42)): 

 || 2.845, 1.551g g  , (44) 

with a root-mean-square deviation from experimental values (36) equal to 0.132. Calculations  

show [1] that large 6
4B  values ( 6

4 2000B  cm−1) could, in principle, solve the problem of this 

discrepancy with experiment, but such large values are at least one and a half times greater than 
expected, as follows from trends of parameters commonly used in literature for trivalent rare earth ions 
doped in double fluoride crystals [11, 13], and do not seem reasonable.  

In order to improve agreement with experiment we consider reduction of the orbital momentum of 
the 4f electron of the Ce3+ ion. For 0.97k   the obtained formulas (41), (42) lead to the following 
g-factors of the ground Kramers doublet of the Ce3+ ion in LiYF4: 

 || 2.734, 1.487g g  , (45) 

with a root-mean-square deviation from experimental values (36) equal to 0.013, that is 10 times less 
than without taking orbital momentum reduction into account (44).  

Thus, we have shown that considering reduction of the orbital momentum of the Ce3+ ion 4f 
electron in the Zeeman energy could improve agreement with g-factors obtained from experiment. 
However, the result (45) should not be considered as final yet. First of all, one must keep in mind that 
a more thorough determination of crystal field parameters in LiYF4:Ce3+ remains a problem. Correct 4f 
energy levels for this compound should be provided. Recently infrared absorption spectrum of the 
LiYF4:Ce3+ crystal corresponding to 2F5/2 → 2F7/2 intra-4f transitions have been measured at 10 K [14], 
providing energies of the excited 4f (2F7/2) levels. Another attempt [15] was made to determine several 
of the Ce3+ excited 4f crystal field levels from analysis of low-temperature 5d–4f luminescence 
spectrum in LiYF4:Ce3+ crystal: microscopic modeling of vibrational structure of the luminescence 
spectrum based on the exchange charge model [16] allowed to distinguish electron-vibrational peaks 
observed in the spectrum from zero-phonon lines corresponding to transitions from the lowest 5d state to 
different 4f levels of the Ce3+ ion. The total of five known for the present moment excited 4f energy levels 
need to be reproduced by modeling of crystal field in LiYF4:Ce3+, consistent with modeling of g-factors. 

6. Conclusions 

Analytical expressions have been derived for g-tensor components of a Kramers doublet of an 
impurity ion doped into dielectric crystal with account of orbital momentum reduction due to 
covalence: g-tensor components are expressed explicitly through coefficients of expansion of the 
doublet wavefunctions in the basis of full momentum of the impurity ion. The obtained expressions 
can be useful in calculations and analysis of g-tensor dependence on the impurity ion Hamiltonian 
parameters. Additionally, a particular case of tetragonal symmetry of crystal field and a case of the 
electronic configuration nl1 of the impurity ion have been considered. For completeness, expressions 
are provided for matrix elements of the impurity ion magnetic moment on arbitrary wavefunctions 
defined by expansions in the basis of full momentum with account of orbital momentum reduction. 

The derived formulas have been used in calculation of g-factors of the ground Kramers doublet of 
the Ce3+ ion doped in LiYF4 crystal. It was shown that taking into account reduction of the orbital 
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momentum of the Ce3+ ion 4f electron in the Zeeman energy can significantly improve agreement with 
g-factors measured experimentally. Further progress can be achieved by going beyond the 
approximation of isotropic reduction factor, estimation of reduction of orbital momentum matrix 
elements by molecular orbital method, and, on the other hand, by consistent modeling of 4f crystal 
field energies. Safe values of 4f crystal field parameters for the Ce3+ ion in LiYF4 crystal are absent in 
literature, though certain progress have been recently achieved in determining crystal field energies 
from measurements for this compound. A thorough investigation of possible 4f crystal field 
parameters in LiYF4:Ce3+ in the context of both g-factor values of the ground Kramers doublet and 4f 
energy levels, established in literature for the present moment, is planned to be conducted in future. 
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