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Results of experiments on MnCO3 investigations by double magnetic resonance are presented.

Additional mode of oscillation has been observed in a created Bose-Einstein condensation of

magnons state in MnCO3. The properties of observed signals are similar to Goldstone modes.
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1. Introduction

In this article magnetic resonance techniques for the resonance spin system excitation at an

additional frequency are presented. This method may be applied when an additional, hidden,

mode of resonance exists. The observation of magnetic resonance in Landau field is the best

example of this case [1]. The Landau field is Fermi liquid corrections for liquid 3He, incorporated

to explain the susceptibility of Fermi liquid. This imaginary field is always directed along the

magnetization. Consequently it does not change the Larmor frequency of magnetic resonance.

It is just directed along the magnetization, even if the magnetization is deflected and rotates

around the external magnetic field. There are two components of magnetization in superfluid
3He - the magnetization of superfluid and normal parts of the liquid. The magnetization of both

components are bound to each other and rotates in phase at the temperatures about 0.4 Tc and

higher. But at the limit of lower temperatures the two components are unbounded and rotates

separately around the common Landau field. The Landau field can be adjusted to the external

field by changing the temperature or the pressure. In [1] it was found that the relaxation rate of

common Larmor precession increases when the Landau field is equivalent to an external magnetic

field. The mode of in-phase precession excites the mode of two components precession around

the Landau field. By this experiment it was shown that the Landau field is a real molecular

field but not an imaginary.

The double resonance is also observed in the systems with magnon Bose-Einstein conden-

sation (BEC). The magnon BEC is a coherent quantum state of non-equilibrium magnons. It

may be created during continuous-wave (CW) nuclear magnetic resonance (NMR) or after a

pulsed NMR at the conditions when the minimum of magnon spectrum energy is lower than

the chemical potential of excited magnons. In this case the macroscopic number of magnons

occupy the lowest energy state according to the Bose statistics. The magnon BEC was first

found in superfluid 3He in 1984 [2, 3]. The BEC leads to the phenomena of spin superfluidity

and related phenomena, like spin current Josephson Effect [4], critical spin supercurrent [5, 6],
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spin current Abrikosov vortex [7, 8], etc. All these phenomena show that the BEC state has

some rigidity, and consequently the Goldstone and Highs modes of ground state excitation may

exist. In the ordered (BEC) state, all spins precess coherently, which means that the whole

macroscopic magnetization of the sample of volume V is precessing [9]:

Mx + iMy = M⊥e
iωt+iα, M⊥ = χHV sin β (1)

where χ is the magnetic susceptibility, α is the phase of precession, β is an angle of magnetization

deflection. The spatial oscillation of α corresponds to a new Bosonic excitation, the Goldstone

modes of oscillation. These modes have the same nature as in cosmology and the particle

physics [10]. The Goldstone modes of oscillation have been found in superfluid 3He-B [11–13].

In this work the BEC state was created by CW NMR. Then the phase modulation h

(modulation index) of RF field on a frequency ωm was applied. When this frequency ωm is of

the order of ωm = C1,2/2L, where C1,2 is the combination of spin waves velocities at different

directions and L is the spatial dimension of BEC state, the additional adsorption is observed.

At the moment when ωm corresponds to one of the Goldstone mode, the BEC signal shows

the additional relaxation rate and at sufficient modulation amplitude can even be destroyed.

Two different modes of Goldstone oscillation were observed in 3He-B by this method: the axial

and plain modes [11–13]. The review of the different experiments with superfluid 3He-B may

be found in [9, 14, 15]. There are few different magnon BEC states found in different states of

superfluid 3He. One of them is found in superfluid 3He-A [16–18] in the conditions of strong

orbital momentum orientation along the magnetic field [19,20]. Exactly the same BEC state was

suggested for antiferromagnets with coupled nuclear-electron precession [21]. The BEC state in

MnCO3 and CsMnF3 was found in the conditions of CW [22,23], pulsed NMR [24,25] and original

switch-off method [26]. The experimental setup for this experiments one can found in [27,28].

2. Results and discussion

Single crystal MnCO3 was used as a sample in our experiments. The sample was grown by

S.V. Petrov in the P.L. Kapitza Institute for physical problems RAS. The crystal has a tablet

shape with radius 0.75 mm and 1 mm height. The experiments were performed at the tem-

perature of 1.5 K, at 547.45 MHz frequency and magnetic field of 139.8 mT. Fig. 1 shows the

calculated spectrum of nuclear-electron magnetic resonance (NEMR) in MnCO3.

We applied the RF field and swept down the magnetic field. At the point ωRF the NMR

signal appears. In the case of traditional linear NMR the signal should disappear at lower

magnetic field values. But in the presence of Suhl–Nacamura interaction the frequency depends

on the angle of magnetization deflection [30]:

ωRF = ωn1 − ωp cos β, (2)

where ωn1 is an unshifted NMR frequency, ωp is the dynamic frequency shift parameter. This

equation has a non-linear solution, when the NMR frequency matches with ωRF at lower field

as cos β = (ωn1 − ωRF)/ωne. In other words the system may rest at the resonance on the

frequency ωRF even at the lower field if the magnetization deflected on the β angle. This

solution is valid only for a region of a sample, where ωn1 is the same. Usually the spin systems

have an inhomogeneous broadening [15]. It means that the local ωn1 is different for different

parts of the sample. Consequently the long standing coherent precession is not possible. The

induced precession is still possible but the amplitude of the signal should strongly depends on the

amplitude of RF field. Indeed, in our case the amplitude of the signal is extremely large and does

not depend on the amplitude of RF field. The signal has critical amplitude of RF field below
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Figure 1. The frequency of NEMR in MnCO3 single crystal as a function of the external magnetic

field [29]. The solid horizontal line corresponds to an unshifted NMR frequency. Arrow shows the

magnetic field sweep direction in our experiments.
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Figure 2. The signal amplitude behavior at different modulation index in MnCO3. Arrows show the

direction of phase modulation frequency sweep.

which it disappears. These properties of the signal correspond to a formation of BEC state

of magnons in a complete agreement with Bose statistics. If one has pumped the significant

number of non-equilibrium magnons with the density N = S(1 − cos β), where S = χH/~γ,

the number of magnons becomes bigger than the critical one and the magnons create a single

coherent quantum state [9]. The critical angles for magnon BEC was calculated in [31] and

correspond to 10◦, which equivalent to ∆ω ≈ 2MHz for the conditions of our experiments. The

next step is to keep the magnon BEC signal at a given field and start to modulate in-phase RF

field with a frequency ωm. In the case of small modulation the small decrease of BEC signal is

observed at the frequency about 100 kHz (see Fig. 2). If one increases the depth of modulation,

the BEC signal become smaller at this frequency of double resonance. And finally at some

critical amplitude of modulation the BEC signal is completely destroyed.
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We performed the systematic studies of BEC signal decrease and found that its amplitude

decrease linearly with increase of modulation index h, starting from some threshold value of

modulation. We may suggest that we excited the Goldstone mode of BEC state. There is not

yet clear theory of the Goldstone modes of BEC in MnCO3. Indeed we are able to estimate

the frequency of this mode. The velocity of spin waves propagation for a small k is about

C ≈ 105 cm/s [32]. The dimensions L of the sample are about 1mm. The frequency of Goldstone

mode is about ωm = C/2L ≈ 5 · 105 rad/s ≈ 100 kHz, in the order of the frequency we have

observed.

3. Summary

The investigations of single crystal MnCO3 by CW magnetic resonance at the temperature

of 1.5 K are presented. The nuclear-electron magnetic resonance signal dependence on the

phase modulation index is obtained. The signal properties are very similar to Goldstone modes

observed earlier in superfluid 3He-B. The frequency of Goldstone modes is the order of 100 kHz.
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