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We review some aspects of the electron paramagnetic resonance (EPR) studies in quasi-one-
dimensional inorganic compounds with special emphasis on the angular dependencies of g-factors, 
linewidth and the information they reveal about the physical system. In particular, we employ for the 
analysis of the data the method of moments and outline the expressions for the second and the fourth 
moments which is related to different spin-spin interactions. 

PACS: 75.10.Dg, 76.30.-v, 75.20. 
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1. Introduction  

Quantum phenomena in low-dimensional magnets continue to attract an interest in condensed matter 
physics. For example, several inorganic quasi-one-dimensional spin Heisenberg antiferromagnets do 
not show a three-dimensional magnetic order, but exhibit a spin-Peierls transition into a singlet S = 0 
ground state characterized by the dimerization of neighboring spins as in CuGeO3 [1]. Recently a 
quasi-one-dimensional (1D) chain compound LiCuVO4 gained interest as a real material with a low 
magnetic ordering temperature TN due to weak inter-chain interaction [2]. In this particular compound, 
magnetic frustration is formed due to competition between ferromagnetic intra-chain nearest-neighbor 
JNN and antiferromagnetic next-nearest-neighbor JNNN exchange interactions an incommensurate helix 
structure of the magnetic Cu2+ moments with S = ½. In addition, the magnetic structure at TN is 
accompanied by the ferroelectric order with spontaneous polarization at the same temperature. 

Electron paramagnetic resonance (EPR) is a convenient method to probe anisotropic spin-spin 
interactions. The EPR linewidth displays the average amplitude of the fluctuating field on the 
magnetic ion, which can be directly related to the parameters of the anisotropic spin-spin interactions. 
The EPR signal of this system consists of a single exchange-narrowed resonance line. The theory of 
the EPR linewidth is still under debate in current literature (see [3, 4] and Refs. therein). 

Two reviews about EPR in inorganic quasi-one dimensional system were published with the accent 
made on the experimental data [5, 6]. Here we focus mainly on the problem how to extract the spin-
Hamiltonian parameters from the angular dependencies of the EPR frequencies and the linewidth.  

This article is a brief review of relevant expressions which are obtained for the second and the 
fourth moments of the EPR line in limit of high temperatures. These formulas can be used for the 
analysis of the angular dependence of EPR linewidth. In particular, measuring EPR linewidth in three 
mutually orthogonal planes (ab), (ac) and (bc) one is able to obtain a complete information about the 
anisotropic exchange parameters. Few examples of such kind of studies will be shortly described. 

                                       
* This short review is prepared on base of invited lecture at XVI International Youth Scientific School "Actual 

problems of magnetic resonance and its application", Kazan, 21 – 25 October 2013 and it is published after 
additional MRSej reviewing. 



Anisotropic exchange and effective crystal field parameters for low dimensional systems, EPR data 

2 Magnetic Resonance in Solids. Electronic Journal. 2014, Vol. 16, No 1, 14102 (8 pp.) 

2. Anisotropic symmetric exchange interaction  

The theory of the EPR linewidth, as a rule based on momentum method. It has been shown that in the 
case of sufficiently strong exchange interaction the EPR spectrum is narrowed into a single Lorentz 
line. Assuming that the EPR line is Lorentzian, the linewidth H  is given by [7]  
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where M2 and M4 are the second and fourth moments of the EPR line, respectively. Both moments can 
be expressed in terms of the microscopic parameters of the Hamiltonian of the spin system using 
expressions  
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Here, anH  contains all anisotropic exchange interactions, crystal field, dipole-dipole and anisotropic 

Zeeman terms, Hex is the isotropic Heisenberg 

exchange ex
ij

i jH J S S  between neighboring spins Si 

and Sj,  means thermodynamic averaging, S   and 

S   are the raising and lowering spin operators, 
respectively. In a high-temperature approximation 

 kT J  the details of calculations of the second and 

the fourth moments are described in Ref. [7]. There is 
a wide temperature range in the paramagnetic state 
where antiferromagnetic correlations have to be taken into account. 

The exchange interactions of the spin in the chain are not necessarily inversely symmetric, i.e. 
interactions to the left and to the right neighbours in a chain may not be identical [8] (see Fig. 1). 

In this case one has the spin Hamiltonian  

 1 1 1 1 1 1 1 1
, , , , , ,

l l l l r r r r
x y z x y z

H J J S S J J S S     

    

    S S S S . (3) 

Here 1lJ , 1lJ   are the parameters of the isotropic and anisotropic exchange interactions with the left 

(l) nearest neighbour spins of magnetic ion, and 1rJ , 1rJ   are the parameters of the isotropic and 

anisotropic exchange interactions with the right (r) nearest neighbor spins of magnetic ions, 
respectively. For brevity, the summation over the spins of the chain (orange colors in Fig. 1) is not 
indicated. The interaction of spins with an external magnetic field is written as: 

 Z
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The summation over the all spins of the chain is not indicated. In a coordinate system with the z-axis 
directed along the external magnetic field, the second and fourth moments of the EPR line are 
calculated as follows [8]:   
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Figure 1. The quasi-one dimensional spin-
system with alternating isotropic 
exchange interaction.  
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where N = S(S + 1), 
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The quantities 1J 
  (where α, β = x, y, z; and  = l, r ) are determined in a local coordinate system with 

z-axis being parallel to the external magnetic field. However, it is important to bear in mind that the 
number of independent parameters of the anisotropic symmetric exchange is less if one works in the 
crystallographic coordinate system. Therefore, it is useful to express the relevant combinations of 

quantities 1J 
  via its values in crystallographic coordinate system (a, b, c). Performing the necessary 

rotation, the following relation can be written as:  
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where 
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 2 2 2g A B C   . (15) 

The angles  and  are the magnetic field orientation with respect to the crystallographic axes. The 
quantities J , g  (,  = a, b, c) are parameters of anisotropic exchange interaction and g-tensor in 

crystallographic coordinate system, respectively. It is assumed, that in the coordinate system (x', y', z'), 
with z'-axis is directed along the chain, the symmetric intra-chain anisotropic exchange interaction 
between two neighbouring spins Si and Sj can be written as  
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x x i j y y i j z z i jH J S S J S S J S S     
        , (16) 

where is assumed that 0x x y y z zJ J J        . The values of the anisotropic exchange interaction for the 

left and right neighbour spins in the chain may differ, therefore the magnitudes of J  (,  = a, b, c) 

in the crystallographic coordinate system for the neighbour spins to the right and to the left may have 
different values. Also the g-tensor in the crystallographic coordinates is obtained from its counterpart 
in local coordinates (x'', y'', z''), where g-tensor have only diagonal components xxg , yyg , zzg , by 

means of a rotation. 

Interesting example of such EPR studies is CuTe2O5 single crystal. At temperatures of 25 to 300 K, 
the EPR spectrum of copper ions consists of one Lorentzian-shaped line with g ~ 2. The angular 
dependences of the EPR linewidth of CuTe2O5 calculated theoretically and measured at frequencies of 
9.4 and 160 GHz at T = 200 K are presented in Fig. 2. The detailed calculation and values of g-tensor 
and exchange interaction parameters can be found in [8]. 

 
Figure 2. Angular dependences of the EPR linewidth in CuTe2O5 at frequencies of 9.4 GHz (circles) and 

160 GHz (triangles) in three crystallographic planes measured at T = 200 K. The dotted lines show 
the contribution to the EPR linewidth from the spin-spin interactions between copper ions in a dimer 
and between copper ions belonging to neighboring dimers. The dashed line corresponds to the
contribution from the anisotropic Zeeman effect at 160 GHz. The solid lines show the sum of all the 
contributions (for each frequency). 

3. Anisotropic Zeeman interaction  

If the EPR linewidth along one axis at a different frequency is greater than its value in the X-band, i.e. 
it depends on the field as H 2, it is logical to assume that this effect originates from the difference 
between the individual g-factors of interacting spins (anisotropic Zeeman effect). As a rule it is can be 
seen from the analysis of the structural data, where one finds that the unit cell contains two 
magnetically nonequivalent ligands surrounding the paramagnetic ions producing an EPR signal. 
Since the EPR spectrum exhibits only one line, its effective g-factor is the average of the g-factors of 
two magnetic centers located at the nonequivalent positions. The frequency-dependent contribution to 
the EPR linewidth due to the difference between the g-factors is given by [9] 
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where ∆g is the difference between the g-factors of the nonequivalent paramagnetic centers. The 
resonance frequency is related to the resonance magnetic field by the relation B res res  g H h  . Using 

values of ∆g and ∆HAZ as determined from the experimental data, we can find exchange integral Jinter 

between magnetic nonequivalent paramagnetic ions. As noted in Fig. 2, the EPR linewidth along the 
b-axis at a frequency of 160 GHz is greater than its value in the X-band in CuTe2O5. Indeed, from 
analyzing the structural data [8], it follows that the unit cell contains two magnetically nonequivalent 
octahedra of oxygen ions that surround the paramagnetic copper ions producing an EPR signal. The 
frequency-dependent contribution to the EPR linewidth due to the difference between the g-factors is 
given by (16). The angular dependence of the EPR linewidth measured at 160 GHz shows that the 
difference between the g-factors of the two nonequivalent octahedra is maximal along the b-axis of the 
crystal and is minimal along the other directions. Since the geometric sizes of the two magnetically 
nonequivalent octahedra are equal, the principal values of the g-tensors in a local coordinate system of 
the octahedra also have to be equal. When fitting the experimental values of the EPR linewidth 
obtained at 160 GHz, we took into account that the contribution from the anisotropic symmetric 
interactions is the same as that in the X-band. The isotropic exchange interaction between the spins of 
the copper ions belonging to neighboring magnetically nonequivalent octahedra as estimated is 
Jinter = 0.5 K. 

4. Anisotropic antisymmetric Dzyaloshinsky-Moriya interaction  

The expressions for M2 and M4 in case of antisymmetric Dzyaloshinsky-Moriya (DM) interaction were 
obtained previously in Ref. [10].  

The spin Hamiltonian of DM interaction of the spin system is written as 

  
, ,

,ij i j i j
x y z

H J D 

    S S S S  (18) 

where J is the parameter of the isotropic exchange interaction, D ( = x, y, z) are parameters of 
antisymmetric DM interaction in the coordinate system with the z-axis parallel to the applied magnetic 
field. The interaction of spins with an external magnetic field is described by (4). The transformation 
between the crystallographic system (a, b, c) and the coordinate system (x, y, z) is determined by 
expressions:  
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where cos  and cos  are determined by (13). The expressions for second and fourth moments are 

expressed:  

 
 

2 2 2
2

2
2 2 2

4

2
2 ,

3

4 2 1
2 ,

3

x y z

x y z

N
M D D D

N N J
M D D D

    


    

 (20) 

where N = S(S + 1). Note that in Ref. [10] a three-dimensional compound of LaMnO3 was considered. 
The components Dx, Dy, and Dz of DM vector d2 refer to the pair Mn-Mn within the ac-plane, whereas 
components xD  and zD  of DM vector d1 refer to the Mn ions along b-axis (see Fig. 3). Jac and Jb are 

the parameters of the isotropic exchange interaction between the spins of magnetic ions in the ac-plane 
and along the b-axis, respectively. Example of the contributions to the angular dependencies of EPR 
linewidth from DM interaction between spins of manganese ions in the plane (d2) and between the 
planes (d1) is shown in Fig. 4. 
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Figure 3. Next neighbor bond of the Mn ions and components of the DM vector in ac-plane (d2) and along 
b-axis (d1) in LaMnO3. 

5. Crystal field 

In the local coordinate system, where the axes are directed along the bonds of the paramagnetic ion-
ligand, the spin Hamiltonian of the crystal field is usually written in the following form  

  2 2 2
cf z x yH DS E S S     , (21) 

where D and E are crystal field parameters. Very often the axes of symmetry of the spin Hamiltonian 
(21) are not coincided to the crystallographic axes. The transformation from the local coordinate 
system to the crystallographic coordinate system under the rotation of the axes is described by the 
Euler angles. To calculate second and fourth moments of lines it is necessary to rotate the spin 
Hamiltonian into the coordinate system where the z-axis is directed along the external magnetic field. 
This procedure was described in [11].  

In the coordinate system with the z-axis directed along the external magnetic field, the Hamiltonian 
(21) takes the form 

 2 2 2
cf ( ) ( ) ( )xx x yy y zz z xy x y y x xz x z z x yz y z z yH S S S S S S S S S S S S S S S              . (22) 

Then, the expression for the second moment of the linewidth is written as [11]  

      2 22 2 2
2 2

1
(4 3) 4 2 10 ,

20 xx yy xy xx yy zz xz yzM N
h

                  
 (23) 

where N = S(S + 1), h is Planck’s constant, the relevant combinations of quantities  (,  = x, y, z) 
via its values in crystallographic coordinate system (a, b, c) are similar to (8) - (12). The expression 
for the fourth moment taking into account the isotropic exchange interaction and crystal field is [11] 

        2 22 2 2 2 2
4 4

(4 3)
4 2 4 2 10

10ac b xx yy xy xx yy zz xz yz

N N
M J J

h
                   

, (24) 

where Jac and Jb are the parameters of the isotropic exchange interaction between the spins of 
magnetic ions in the ac-plane and along the b-axis, respectively. 

The crystal field and antisymmetric Dzyaloshinsky-Moriya (DM) interaction are important for 
description angular dependencies of EPR linewidth in La0.95Sr0.05MnO3 [10]. In three orthogonal 
planes in La0.95Sr0.05MnO3, one observes a broad, exchange-narrowed resonance line.  
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The contributions of crystal field and DM interaction consist of the superposition of the four 
nonequivalent Mn ions in the orthorhombic unit cell. The crystal-field parameters for all Mn positions 
and the DM interaction for nearest-neighbor Mn ions along the b-axis as well as in the ac-plane were 
successfully extracted [10] from angular dependencies of EPR linewidth. Angular dependencies of 
EPR linewidth in La0.95Sr0.05MnO3 are presented in Fig. 4. 

 

 

Figure 4. Angular dependence of the EPR linewidth in La0.95Sr0.05MnO3 for the magnetic field applied within 
the three crystallographic planes at 300 K. The solid lines represent the fit. The lines below illustrate
the contributions of crystal field (CF) and Dzyaloshinsky-Moriya (DM) interaction, respectively. 

6. Summary 

In this short review we have outlined expressions for the second and the fourth moments of EPR 
linewidth in high-temperature limit obtained by various authors and described how they were used for 
the interpretation of angular dependencies of the EPR linewidth. Additional information about the 
anisotropic interaction parameters may be obtained via analyses of temperature dependences of EPR 
linewidth. Example of such study was recently presented in [12]. Combining analyses of angular and 
temperature dependencies of the EPR linewidh, authors were able to extract DM components for one 
more low-dimensional compound (Cs2CuCl4). Interesting example how crystal field can influence on 
the temperature dependence of EPR linewidth is described in [13].  
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