
 
 

  
 

 
Volume 16,  

Issue 2 
Paper No 14206, 

1-21 pages 
2014 

 

 
 http://mrsej.kpfu.ru 

 http://mrsej.ksu.ru 

ISSN 2072-5981



 

Established and published by Kazan University  
Sponsored by International Society of Magnetic  
                                                     Resonance (ISMAR) 
Registered by Russian Federation Committee on Press, 
                                                               August 2, 1996 

            First Issue was appeared at July 25, 1997 
 

© Kazan Federal University (KFU)* 
 

"Magnetic Resonance in Solids. Electronic Journal" (MRSej) is a 
peer-reviewed, all electronic journal, publishing articles which meet 

the highest standards of scientific quality in the field of basic 
research of a magnetic resonance in solids and related phenomena. 

MRSej is free for the authors (no page charges) as well as for the 
readers (no subscription fee). The language of MRSej is English. 
All exchanges of information will take place via Internet. Articles 

are submitted in electronic form and the refereeing process uses 
electronic mail. All accepted articles are immediately published by 
being made publicly available by Internet (http://MRSej.kpfu.ru).  

 
 

                                                           
*
 In Kazan University the Electron Paramagnetic Resonance (EPR) was discovered by 

Zavoisky E.K. in 1944. 

Editors-in-Chief 
Jean Jeener (Universite Libre de 

Bruxelles, Brussels)  
Boris Kochelaev (KFU, Kazan)  

Raymond Orbach (University of 
California, Riverside)  

 
 
 
 
 
 
 
 
 

Executive Editor 
Yurii Proshin (KFU, Kazan) 

mrsej@kpfu.ru  
editor@ksu.ru 

Editors 
Vadim Atsarkin (Institute of Radio 

Engineering and Electronics, Moscow)  
Yurij Bunkov (CNRS, Grenoble)  

Mikhail Eremin (KFU, Kazan)  
David Fushman (University of Maryland, 

College Park) 
Hugo Keller (University of Zürich, Zürich)  
Yoshio Kitaoka (Osaka University, Osaka)  

Boris Malkin (KFU, Kazan)  
Alexander Shengelaya (Tbilisi State 

University, Tbilisi)  
Jörg Sichelschmidt (Max Planck Institute for 

Chemical Physics of Solids, Dresden) 
Haruhiko Suzuki (Kanazawa University, 

Kanazava)  
Murat Tagirov (KFU, Kazan)  

Dmitrii Tayurskii (KFU, Kazan) 



Spin response in HTSC cuprates: generalized RPA approach

with projection operators method†

M.V. Eremin1,∗, I.M. Shigapov1, I.M. Eremin1,2

1Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
2Institut fur Theoretische Physik III, Ruhr-Universit at Bochum, D-44801 Bochum, Germany

∗E-mail: meremin@kpfu.ru

(Received: March 26, 2014; accepted: April 19, 2014)

We derive the dynamical spin susceptibility in the t-J-G model combining the random phase

approximation (RPA) and projection operator method, which allows describing the mutual

interplay between the local and the itinerant components of susceptibility. Near the antifer-

romagnetic wave vector the calculated dispersion of the spin excitations reproduces well the

so-called hour-glass dispersion, characteristic for several layered cuprates. It is formed as a

result of competition between the original spin-gap in magnon-like excitations spectrum and

the superconducting gap, which affects the itinerant component of the susceptibility. Further-

more, the calculated collective spin excitations along (0, 0)-(0, π) are in agreement with the

positions of the absorption peaks in the inelastic X-ray scattering spectra. They refer to the

paramagnon-like modes, characteristic to the itinerant spin system, rather than magnon-like

excitations that originate from short range order effect in the system of local spins at Cu sites.

PACS: 71.27.+a, 74.72.-h

Keywords: HTSC, cuprates, dynamical spin susceptibility, collective spin excitations

1. Introduction

The magnetic properties of high-temperature superconductors such as YBa2Cu3O6+y are quite

unusual. These materials contain charge carriers, distributed mainly over the oxygen positions

in CuO2 plane and localized spins at the copper sites. Correspondingly, two approaches are used

for the description of the dynamic spin susceptibility. When one starts from overdoped regime,

it is naturally to employ the conventional Fermi liquid type description with effective on-site

Coulomb repulsion of the carriers at the same site. If one considers the lightly doped regime,

both the tendency towards Mott physics and strong antiferromagnetic correlations have to be

taken into account. Here we focus on intermediate doping level, when there are both local and

itinerant spins, but the system is still uniform. Possible phase separations in underdoped part

of the phase diagram and existence of the spin density waves or charge density waves are not

considered.

Previously [1, 2], combining projection Mori method and Green’s function technique we de-

rived an analytical formula for the spin susceptibility in superconducting cuprates. It allowed to

take self consistently into account both the itinerant and the localized components of magnetic

susceptibility. However, the spectrum of collective spin excitations, which is in focus of many

experimental investigations, was not investigated in details. A dispersion of the collective spin

excitations is needed for the construction of the microscopic theory of high temperature super-

conductivity, at least, when the spin fluctuations mechanism is assumed. In the present paper

we systematize our results. We also discuss the possible improvement of the general expression

†This paper is originally written by authors on the occasion of eightieth birthday of Professor

Boris I. Kochelaev.
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for the spin susceptibility and will present new numerical results for real and imaginary parts

of the dynamic spin susceptibility along symmetry routes of Brillion zone in the normal and

superconducting states.

2. Model and general expression for susceptibility

The Hamiltonian of the model is written as [1, 2]

H =
∑

i,j,σ

tijψ
pd,σ
i ψσ,pd

j +
1

2

∑

i,j

Jij [SiSj −
ninj
4

] +
1

2

∑

i,j

G∞
ij δiδj = Ht +HJ +HG. (1)

Here, ψpd,σ
i (ψσ,pd

j ) are the creation (annihilation) operators for composite quasiparticles. Symbol

pd means that there is a strong coupling between copper and oxygen holes at each Cu-site

in Cu-O plane, which is resembled in the formation of the so-called Zhang Rice [3-6] (copper-

oxygen) singlet band at strong enough doping level. The second term HJ = 1
2

∑

i,j
Jij [SiSj − ninj

4 ]

describes the superexchange interaction between Cu-spins at site i and j [7], ni = ψ↑,↑
i + ψ↓,↓

i is

operator of the number of spins at site i. The last term refers to screened Coulomb repulsion

between doped oxygen holes, δi = ψpd,pd
i is the operator of the number of copper-oxygen singlets

per one unit cell.

For derivation of the spin susceptibility we employ the Green’s function method and pro-

jection formalism. It is convenient to start from the equation

ω〈〈S+
q

∣

∣S−
−q 〉〉 =

∑

k′

(tk′+q − tk′)〈〈ψ↑,pd
k′+qψ

pd,↓
k′

∣

∣S−
−q 〉〉+

∑

j,l

Jjle
−iqRj 〈〈S+

l S
z
j − Sz

l S
+
j

∣

∣S−
−q 〉〉. (2)

Here it is assumed that 〈Sz
i 〉 = 0 i.e. the long range spin order is absent, tk =

∑

j
tij exp(ikRij) is

usual Fourier transform of the hopping integral. On the right-hand side we get two new Green’s

functions. The first can be naturally referred to itinerant spins, which accompany the motion

of copper-oxygen singlet correlations over Cu-O plane, whereas the second term in Eq. (2) is

related to localize spins at Cu-sites.

Linearization of the anticommutator





∑

j,l

Jjle
−iqRj (S+

l S
z
j − Sz

l S
+
j ),HJ




∼= Ω2

qS
+
q (3)

was discussed in many papers [8-18], where

Ω2
q = 2J2

1α |K1| (2− γq)(∆sp + 2 + γq)] (4)

is the typical expression for collective local spin excitations in layered aniferromagnets, ∆sp is

dimensionless spin-gap parameter, γq = cos qxa + cos qya, α is decoupling parameter, which is

usually calculated self-consistently via the sum rule 〈S+
i S

−
i 〉 = 1

2 (1 − δ) which is discussed in

Appendix C, δ is a number of carriers per one unit cell, K1 = K01 = 4〈Sz
0S

z
1〉 is the spin-spin

correlation function of nearest neighbors.

Calculation of the anticommutator

[

∑

i,l

Jile
−iqRi(S+

l S
z
i − Sz

l S
+
i ),Ht

]

is given in Appendix A.
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It is approximated as follows





∑

i,l

Jile
−iqRi(S+

l S
z
i − Sz

l S
+
i ),

∑

tj,mψ
pd,σ
j ψσ,pd

m




∼=

∼= J1t1 [2− cos qxa− cos qya]S
+
q − 1

2

∑

k

(

Jk+q − Jk

)

(tk+q − tk)ψ
↑,pd
k+qψ

pd,↓
k .

(5)

Here Jk =
∑

l

Jil exp(ikRil) and Jil = Jil〈ψpd,↑
i ψ↑,pd

l 〉. Angular brackets denote the thermody-

namic average.

Using Eqs. (3), (5) we derive the equation for Fourier transform of Green’s function as

ω
∑

i,l

Jile
−iqRi〈〈[(S+

l S
z
i − Sz

l S
+
i ),Ht +HJ ]

∣

∣S−
−q 〉〉 =

− i

π
J1K1 (2− γq) +

{

Ω2
q + J1t1 [2− cos qxa− cos qya]

}

〈〈S+
q

∣

∣S−
−q 〉〉

− 1

2

∑

k

(

Jk+q − Jk

)

(tk+q − tk) 〈〈ψ↑,pd
k+qψ

pd,↓
k

∣

∣S−
−q 〉〉.

(6)

Appling projection method as it was described in Ref. [1] we write

i
∂ψ↑,pd

k

∂t
= εkψ

↑,pd
k +∆↑

kψ
pd,↓
−k +

1

N

∑

q

t′k−qψ
↓,pd
k−qS

+
q

− 1

2N

∑

q

Jqψ
↓,pd
k−qS

+
q +

1

2N

∑

q

G′
q(ψ

↑,pd
k−qψ

pd,pd
q + ψpd,pd

q ψ↑,pd
k−q).

(7)

The expression for the energy of quasiparticales is written as [1, 2]

εk =
∑

l

{tlj [P + (1 + 2F t
jl)〈Sz

j S
z
l 〉/P ]−

2GjlF
G
jl + JjlF

J
jl

1 + δ
〈ψpd,↑

l ψ↑,pd
j 〉}eikRjl . (8)

Here, P = (1+ δ)/2, F t
jl is projection parameter, which will be calculated later via a number of

holes per one unit cell δ and spin-spin correlation function 〈Sz
jS

z
l 〉. It is interesting to compare the

quantity in square brackets with Gutzwiller’s projection factor 2δ/(1+ δ), which was introduced

for the phenomenological description of the doping dependent bandwidth [19]. In contrast to

Hubbard 1 approximation for δ → 0 the bandwidth shrinks to zero. The same result gives

expression P + (1 + 2F t
jl)〈Sz

j S
z
l 〉/P . For this particular case one expects that the spin-spin

correlation for nearest neighbors on the square lattice will be given by 〈Sz
0S

z
1〉 ∼= −1/4 and

F1 → 0. Note that the role of the last term in the bracket (8) at δ ∼= 0.2 is relatively small.

The superconducting gap equation is given by [1, 2]

∆k =
1

PN

∑

k′

(

1

2
Jk−k′〈ψ↑,pd

k′ ψ↓,pd
−k′ 〉 −G

′

k−k′〈ψ↑,pd
k′ ψ↓,pd

−k′ 〉

+tk′〈ψ↓,pd
k′ ψ↑,pd

−k′ 〉 − t
′

k′〈ψ↑,pd
k′ ψ↓,pd

−k′ 〉
)

,

(9)

where t′k =
∑

l

tjlF
t
jl exp(ikRjl) is Fourier transform of the reduced hopping integral and Gq =

G∞
q − J1/4. The analysis of this equation for Jk−k′ > 2Gk−k′ , which we assume hereafter,

reveals ∆k = ∆(T )(cos kxa− cos kya)/2. Having expression (7) one can construct the equation
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for functions 〈〈ψ↑,pd
k′+qψ

pd,↓
k′ |S−

−q〉〉 and 〈〈ψpd,↓
k′ ψ↑,pd

k′+q|S−
−q〉〉, which enter in (2) and (5). However,

one has to be careful because the rule of differentiation of product composite operators, as it

was pointed in Ref. [10], is different from the usual case. Before applying expression (7) we write

the following relations

ψ↑,pd
k+qψ

pd,↓
k =

1

N

∑

i,j

ψ↑,pd
i ψpd,↓

j (1− δij) e
−i(k+q)Ri+ikRj +

1

N
S+
q , (10)

ψpd,↓
k ψ↑,pd

k+q =
1

N

∑

i,j

ψ↑,pd
i ψpd,↓

j (1− δij) e
−i(k+q)Ri+ikRj . (11)

Then carry out the differentiation of operators with lattices index (site representation) and

taking into account (10) and (11) one gets

ω〈〈ψ↑,pd
k+qψ

pd,↓
k

∣

∣S−
−q 〉〉 =

i

2π

(

〈ψ↑,pd
k+qψ

pd,↑
k+q〉 − 〈ψ↓,pd

k ψpd,↓
k 〉

)

+ (εk+q − εk)〈〈ψ↑,pd
k+qψ

pd,↓
k

∣

∣S−
−q 〉

− 1

N

(

[FJ
1

2
Jq − tk(1− Ft)]〈ψ↓,pd

k ψpd,↓
k 〉

−[FJ
1

2
Jq − tk+q(1− Ft)]〈ψ↑,pd

k+qψ
pd,↑
k+q〉)]〈〈S+

q

∣

∣S−
−q 〉〉

)

− 1

N

∑

k′

(εk′+q − εk′)〈〈ψ↑,pd
k′+qψ

pd,↓
k′

∣

∣S−
−q 〉〉+

ω

N
〈〈S+

q

∣

∣S−
−q 〉〉,

(12)

ω〈〈ψpd,↓
k ψ↑,pd

k+q

∣

∣S−
−q 〉〉 =

i

2π

(

〈ψpd,↑
k+qψ

↑,pd
k+q〉 − 〈ψpd,↓

k ψ↓,pd
k 〉

)

+ (εk+q − εk)〈〈ψpd,↓
k ψ↑,pd

k+q

∣

∣S−
−q 〉〉

− 1

N

(

[FJ
1

2
Jq − tk(1− Ft)]〈ψpd,↓

k ψ↓,pd
k 〉

−[FJ
1

2
Jq − tk+q(1− Ft)]〈ψpd,↑

k+qψ
↑,pd
k+q〉)]〈〈S+

q

∣

∣S−
−q 〉〉

)

− 1

N

∑

k′

(εk′+q − εk′)〈〈ψpd,↓
k′ ψ↑,pd

k′+q

∣

∣S−
−q 〉〉.

(13)

These equations are rewritten as follows [2]

〈〈ψpd,↓
k ψ↑,pd

k+q

∣

∣S−
−q 〉〉 =

i

2π
χk,q +

1

N
η′k,q〈〈S+

q

∣

∣S−
−q 〉〉+

1

N
ζk,qD

′(ω, q), (14)

〈〈ψ↑,pd
k+qψ

pd,↓
k

∣

∣S−
−q 〉〉 = − i

2π
χk,q −

1

N
η′′k,q〈〈S+

q

∣

∣S−
−q 〉〉 −

1

N
ζk,qD

′′(ω, q). (15)

Here

χk,q =
nk+q − nk

ω + εk − εk+q
, η

′

k,q =
1

2
Jqχk,q −

t
′

k+qnk+q − t
′

knk

ω + εk − εk+q
,

ζk,q =
1

ω + εk − εk+q
, η

′′

k,q = η
′

k,q +
P (t

′

k+q − t
′

k)− ω

ω + εk − εk+q
,

(16)

nk = Pf (εk) are occupation numbers, f (εk) is Fermi function. New Green’s functions, which

are appeared on right-hand side (14) and (15) are:

D′(ω, q) = −
∑

k

(εk+q − εk)〈〈ψpd,↓
k ψ↑,pd

k+q

∣

∣S−
−q 〉〉, (17)
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D′′(ω, q) =
∑

k

(εk+q − εk)〈〈ψ↑,pd
k+qψ

pd,↓
k

∣

∣S−
−q 〉〉. (18)

To compute these functions the following exact relations are used [1, 2]

∑

k

ψpd,↓
k ψ↑,pd

k+q = 0, (19)

∑

k

ψ↑,pd
k+qψ

pd,↓
k =

∑

i

S+
i e

−iqRi = S+
q . (20)

Combining Eqs. (14), (15) and (19), (20) one finds

D′(ω, q) = −
{

iN

2π
χ(ω, q) + η′(ω, q)〈〈S+

q

∣

∣S−
−q 〉〉

}

/ζ(ω, q) (21)

and

D′′(ω, q) = −
{

iN

2π
χ(ω, q) +

[

1 + η′′(ω, q)
]

〈〈S+
q

∣

∣S−
−q 〉〉

}

/ζ(ω, q). (22)

Here,

χ (ω, q) =
1

N

∑

k

χk,q, η
′ (ω, q) =

1

N

∑

k

η′k,q,

ζ (ω, q) =
1

N

∑

k

ζk,q, η
′′ (ω, q) =

1

N

∑

k

η′′k,q.

(23)

Taking into account that
∑

k

(εk+q − εk) = 0, it is easy to prove that D′(ω, q) = D′′(ω, q) and

derive the relation [2]

F t
ij =

|Kij |
(1 + δ)2 − 2 |Kij |

. (24)

Substituting D′′(ω, q) functions in (15) we get

〈〈ψ↑,pd
k+qψ

pd,↓
k

∣

∣S−
−q 〉〉 = − i

2π

[

χk,q −
ζk,q

ζ(ω, q)
χ(ω, q)

]

+
1

N

(

[1 + η′′(ω, q)]
ζk,q

ζ(ω, q)
− η′′k,q

)

〈〈S+
q

∣

∣S−
−q 〉〉.

(25)

Then multiplying (2) by frequency and using Eq. (5) we find

{

ω2 − Ω2
q − J1t1 [2− cos qxa− cos qya]

}

〈〈S+
q

∣

∣S−
−q 〉〉 = − i

2π
2J1K1 (2− γq)

− 1

2

∑

k

(

Jk+q − Jk

)

(tk+q − tk) 〈〈ψ↑,pd
k+qψ

pd,↓
k

∣

∣S−
−q 〉〉

+ ω
∑

k′

(tk′+q − tk′)〈〈ψ↑,pd
k′+qψ

pd,↓
k′

∣

∣S−
−q 〉〉

= − i

π
J1K1 (2− γq)−

1

2

∑

k

(

Jk+q − Jk − 2ω
)

(tk+q − tk) 〈〈ψ↑,pd
k+qψ

pd,↓
k

∣

∣S−
−q 〉〉.

(26)

Substituting here the expression for 〈〈ψ↑,pd
k+qψ

pd,↓
k

∣

∣S−
−q 〉〉 function as given by (25), we get the

equation

(

ω2 − Ω2
q − t1J1 [2− cos qxa− cos qya]

)

〈〈S+
q

∣

∣S−
−q 〉〉 =

= − iN
2π

[

2J1K1 (2− γq) +
χ

ζ
ζtJ − χtJ

]

−
[

(1 + η′′)
ζtJ
ζ

− η′′tJ

]

〈〈S+
q

∣

∣S−
−q 〉〉.

(27)

Magnetic Resonance in Solids. Electronic Journal. 2014, Vol. 16, No 2, 14206 (21 pp.) 5
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Since Nχ+,−
total(ω, q) = 2πi〈〈S+

q

∣

∣S−
−q 〉〉 for the dynamical spin susceptibility per one unit cell we

get

χ+,−
total =

χζtJ + [2J1K1 (2− γq)− χtJ ] ζ

[1 + η′′] ζtJ +
[

ω2 − Ω2
q − J1t1 (2− γq)− η′′tJ

]

ζ
. (28)

Here the symbol (ω, q), which accompanies the functions χ, ζ, η, is dropped for short. The new

functions with index tJ are:

χtJ(ω, q) =
1

2N

∑

k

(tk+q − tk)
[

Jk+q − Jk − 2ω
]

χkq, (29)

η′′tJ (ω, q) =
1

2N

∑

k

(tk+q − tk)
[

Jk+q − Jk − 2ω
]

η′′kq, (30)

ζtJ(ω, q) =
1

2N

∑

k

(tk+q − tk)
[

Jk+q − Jk − 2ω
]

ζkq. (31)

The expression (28) can be rewritten also as follows

χ+,−
total =

χζtJ + [2J1K1 (2− γq)− χtJ ] ζ

[1 + λ] ζtJ +
[

ω2 −Ω2
q − J1t1 (2− γq)− λtJ

]

ζ
, (32)

where λ = η′′ − ωζ (this is a function like defined in [20]):

λk,q = η′k,q +
P (t′k+q − t′k)

ω + εk − εk+q
,

λ = λ (ω, q) =
1

N

∑

k

λk,q,

λtJ(ω, q) =
1

2N

∑

k

(tk+q − tk)
[

Jk+q − Jk − 2ω
]

λkq.

It seems this form is more convenient for numerical calculations. Another form for suscep-

tibility, which has more clear properties under electron-hole transformation, is discussed in

Appendix B. Note that in numerical calculations the substitution ω → ω + iΓ is assumed in

all entering functions. Γ is dumping factor, which can be anisotropic along the Fermi contour.

Factor [1 + λ] in denominator (32) reminds the corresponding Stoner’s factor in random phase

approximation schema (RPA) for itinerant electron system. On the other hand, the quantity
[

Ω2
q − ω2 + J1t1 (2− γq) + λtJ

]

is typical for localized spin-subsystem. Collective spin excita-

tions are determined by equation

[1 + λ]
ζtJ
ζ
ζtJ +

[

ω2 − Ω2
q − J1t1 (2− γq)− λtJ

]

= 0. (33)

Therefore, local spin excitations (magnon-like) and itinerant holes (paramagnon-like) are coupled

to each other self-consistently. In other words the total susceptibility (32) can be considered

as a possible variant of description magnetic susceptibility compounds with interplay between

local and itinerant spin subsystems.

6 Magnetic Resonance in Solids. Electronic Journal. 2014, Vol. 16, No 2, 14206 (21 pp.)
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3. Superconducting state

The expression for spin response function (32) retains its form in superconducting state as well.

The entering functions, of course, modify due to Bogolyubov transformations in the supercon-

ducting state. The method of calculation can be found in Ref. [1]. The χ(ω, q) function at

T < Tc is written like in BSC theory, except additional factor by P = (1 + δ)/2:

χ(ω, q) =
P

N

∑

Sxx
fk+q − fk

ω + iΓ + Ek − Ek+q
+
P

N

∑

Syy
fk − fk+q

ω + iΓ−Ek + Ek+q

+
P

N

∑

S(−)
yx

fk + fk+q − 1

ω + iΓ− Ek − Ek+q
+
P

N

∑

S(+)
xy

1− fk − fk+q

ω + iΓ + Ek + Ek+q
,

(34)

fk = {1 + exp[Ek/kBT ]}−1 is the usual Fermi function. For the sake of simplicity, we are using

the following abbreviation for the coherence factors:

Sxx = xkxk+q + zkzk+q, Syy = ykyk+q + zkzk+q,

S(+)
xy = xkyk+q − zkzk+q, S(−)

yx = ykxk+q − zkzk+q,
(35)

where

xk =
1

2

[

1 +
εk − µ

Ek

]

, yk =
1

2

[

1− εk − µ

Ek

]

,

zk =
∆k

2Ek
, Ek =

√

(εk − µ)2 + |∆k|2.
(36)

The function λ(ω, q) is written as [20]

λ(ω, q) =
1

2
JqFJχ(ω, q)

− P

N

(

∑

Sxx
t′k+q(fk+q − 1)− t′k(fk − 1)

ω + iΓ +Ek − Ek+q
+

∑

Syy
t′kfk − t′k+qfk+q

ω + iΓ− Ek + Ek+q

+
∑

S(−)
yx

t′kfk − t′k+q(1− fk+q)

ω + iΓ− Ek − Ek+q
+

∑

S(+)
xy

t′k(1− fk)− t′k+qfk+q

ω + iΓ + Ek +Ek+q

)

.

(37)

Physically last term in Eq. (37) corresponds to an effective molecular field of kinematic origin.

It is strong correlation effect, because in our case the anticommutate relations are different from

conventional Fermi liquid.

The function ζ(ω, q) is written as follows:

ζ(ω, q) =
1

N

∑ Sxx
ω + iΓ + Ek − Ek+q

+
1

N

∑ Syy
ω + iΓ− Ek + Ek+q

+
1

N

∑ S
(−)
yx

ω + iΓ− Ek − Ek+q
+

1

N

∑ S
(+)
xy

ω + iΓ + Ek + Ek+q
.

(38)

Let us now for the moment assume that we do not have any conduction electrons (holes).

Substituting zero instead Fermi functions, from expression (26) one gets

χ+,−
local(ω, q) =

−2J1K1(2− cq)

Ω2
q − ω2

. (39)

This expression is identical to those found by many authors for lightly doped cuprates [8-17]. It is

remarkable that magnetism of localized spins at T < Tc is strongly suppressed “or in other words

frozen out” due to the superconducting gap, which naturally incorporated in function ζ(ω, q).

In opposite limit, when spin-spin correlation functions are small, and conducting bandwidth is
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large enough and correspondently function ζ(ω, q) is small the expression (32) corresponds to

generalized random phase approximation (GRPA) schema [21-23]. Moreover, in limit q → 0,

ω → 0 the expression (32) converts to static susceptibility expression, which corresponds to

those one, which was derived in Ref. [24], beyond Green’s function method.

4. Numerical results

Calculated imaginary and real parts of susceptibility along triangle contour in Brillouin zone

are displayed in Figs. 1-10. The chosen parameters are: Γ = 4meV , δ = 0.33. We have

neglected J2 and K2 as they are small numerically. The energy dispersion was chosen according

to photoemission data [25]

εk = 2t1(cos kxa+ cos kya) + 4t2 cos kxa cos kya− µ, (40)

where (in meV): t1 = 139, t2 = −33, µ = 88. The superconducting gap function was set in

agreement with analyzes of the temperature dependencies of nuclear relaxation rate, Knight

shift and superfluid density, which were discussed in Ref. [23] and [26];

∆k =
∆0

2
(cos kxa− cos kya) tanh

(

1.76
√

Tc/T − 1
)

. (41)

The decoupling parameters α, β and FJ below (except of specific cases in Fig. 9 ) were set by 1.

Figure 1. (Color online) Imaginary part of the dynamical susceptibility for the normal state. Input

values are: T = 100K, J1 = 66meV, K1 = −0.2, ∆sp = 0.1, Ft = 0.1. Upward dispersion can be

interpreted as a damped magnon-like collective spin excitations. Vertical scale is in 1/eV.
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Figure 2. (Color online) The real part of the dynamical spin susceptibility for the superconducting

state. Input values are: T = 10K, ∆0 = 25meV, J1 = 66meV, K1 = −0.2, ∆sp = 0.14, Ft = 0.1.

Vertical scale is in 1/eV.

Figure 3. (Color online) The imaginary part of the dynamical spin susceptibility for the superconducting

state. Input values are: T = 10K, ∆0 = 25meV, J1 = 66meV,K1 = −0.2, ∆sp = 0.14, Ft = 0.1. Vertical

scale is in 1/eV.

Magnetic Resonance in Solids. Electronic Journal. 2014, Vol. 16, No 2, 14206 (21 pp.) 9



Spin response in HTSC cuprates: generalized RPA approach with projection operators method

Figure 4. (Color online) Zoomed in region of point the imaginary part of the spin susceptibility for the

superconducting state . This aria is usually probed by inelastic neutron scattering [27-33]. Input values

are: T = 10K, ∆0 = 25meV, J1 = 66meV, K1 = −0.2, ∆sp = 0.14, Ft = 0.1. Vertical scale is in 1/eV.

Figure 5. (Color online) Real part of the spin susceptibility for the superconducting state. Input values

are: T = 10K, ∆0 = 30meV, J1 = 66meV, K1 = −0.2, ∆sp = 0.14, Ft = 0.1. Vertical scale is in 1/eV.
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Figure 6. (Color online) Imaginary part of the spin susceptibility for the superconducting state. Input

values are: T = 10K, ∆0 = 30meV, J1 = 66meV, K1 = −0.2, ∆sp = 0.14, Ft = 0.1. Vertical scale is in

1/eV.

Figure 7. (Color online) The imaginary part of the spin susceptibility for the superconducting state in

region of (π, π) point. This region is usually probed by inelastic neutron scattering [27-33]. Input values

are: T = 10K, ∆0 = 30meV, J1 = 66meV, K1 = −0.2, ∆sp = 0.14, Ft = 0.1. Vertical scale is in 1/eV.
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Figure 8. (Color online) Fragment of imaginary part susceptibility in superconducting state along the

line in Brillouin zone. This region is studied by resonance inelastic X-ray scattering (RIXS) [34-38]. Input

values are: T = 10K, ∆0 = 30meV, J1 = 66meV, K1 = −0.2, ∆sp = 0.14, Ft = 0.1. Vertical scale is in

1/eV.

Figure 9. (Color online) Fragment of the imaginary part of the spin susceptibility for the supercon-

ducting state near (π, π) point. Input values are: T = 10K, ∆0 = 25meV, J1 = 70meV, K1 = −0.2,

∆sp = 0.147, Ft = 0.1, β = 0.6. Vertical scale is in 1/eV.
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Figure 10. (Color online) Fragment of the imaginary part of the spin susceptibility for the supercon-

ducting state near (π, π) point. Input values are: T = 10K, ∆0 = 25meV, J1 = 76meV, K1 = −0.152,

∆sp = 0.17, Ft = 0.1, FJ = 0.89. Vertical scale is in 1/eV.

Figure 11. (Color online) Dispersion of the collective spin excitations calculated as a solution to the

equation (32) along the route (0, 0) − (0, π) − (π, π) − (0, 0) in the Brillouin zone for the normal state

(dashed line) and superconducting one (solid line). Parameters are the same as in Fig. 3.
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5. Conclusions and final remarks

The calculated results, shown in the previous section for the spin response near (π, π) point of

the BZ resemble very strongly the experimental results reported by inelastic neutron scattering

for hole doped cuprates [27-33]. Both the upward and the downward dispersions are successfully

reproduced by our calculations. We have found that the fine features of the dynamical spin

susceptibility near (π, π) point around the frequency 40meV are very sensitive to the possible

variation of the spin-gap (∆sp
∼= 0.14 or ∆sp

∼= 0.16) and superconducting gap (∆0 = 25meV

or ∆0 = 30meV) parameters. Relatively small changes of these values lead to quite essential

modification in the calculated picture. Under small changes of the input parameters the picture

with the intersection of upward and downward dispersions (or in other words X-shape ) in Fig. 4

and in Fig. 7 transforms to the so-called hour-glasses picture (Fig. 9).

As for the shape of the imaginary part of the spin susceptibility along the route (0, 0)−(π, 0)

is very similar to those which was observed by inelastic resonance X-ray scattering (RIXS)

[34-38]. Generally, its dispersion is not so sensitive to the possible variation of the input param-

eters. Double shape form calculated by us here and in Ref. [20] was not observed experimentally,

probably because of the error bars in the current RIXS technique, which is about 300meV [34-38].

It is interesting to note that the splitting between two mountain chain-like features, found in

Fig. 8, is sensitive to the superconducting gap values. This fact clearly demonstrates that these

mountain chain-like features are more related to the itinerant part of spin subsystem rather than

to the collective spin excitation of the localized spins. Another interesting observation is that the

calculated frequency plot of the collective spin excitations (Fig. 11) does not exactly corresponds

to the maximum positions of imaginary part, shown in Fig. 3. Especially this can be easily seen

for dispersions along the route (0, 0) − (π, 0). This observation strongly supports the idea that

peaks in RIXS spectra correspond to the spin excitations, which originate from paramagnon-like

features of the itinerant origin rather than magnon-like excitations, which would originate from

the short range order of the local spins at Cu sites. The latter explains better the nature of the

high-energy spin excitations near (π, π) point with frequencies which are above 2∆0/~.
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Appendix A

Let us consider the commutator:




∑

i,l

Jile
−iqRi(S+

l S
z
i − Sz

l S
+
i ),

∑

j,m

tj,mψ
pd,σ
j ψσ,pd

m



 . (1a)

Using relation [AB,CD] = A[B,C]D +AC[B,D] + [A,C]DB + C[A,D]B one has




∑

i,l

Jile
−iqRi(S+

l S
z
i − Sz

l S
+
i ),

∑

j,m

tj,mψ
pd,σ
j ψσ,pd

m



 =

= −1

2

∑

Jile
−iqRiti,mS

+
l (ψ

pd,↑
i ψ↑,pd

m − ψpd,↓
i ψ↓,pd

m )

+
1

2

∑

Jile
−iqRitj,iS

+
l (ψ

pd,↑
j ψ↑,pd

i − ψpd,↓
j ψ↓,pd

i )

−
∑

Jile
−iqRitl,mψ

pd,↓
l ψ↑,pd

m Sz
i +

∑

Jile
−iqRitj,lψ

pd,↓
j ψ↑,pd

l Sz
i

+
∑

Jile
−iqRiti,mS

z
l ψ

pd,↓
i ψ↑,pd

m −
∑

Jile
−iqRitj,iS

z
l ψ

pd,↓
j ψ↑,pd

i

+
1

2

∑

Jile
−iqRitl,m(ψpd,↑

l ψ↑,pd
m − ψpd,↓

l ψ↓,pd
m )S+

i

− 1

2

∑

Jile
−iqRitj,l(ψ

pd,↑
j ψ↑,pd

l − ψpd,↓
j ψ↓,pd

l )S+
i .

(2a)

Doing averaging we focus on the quantities Jil〈ψpd,σ
i ψσ,pd

l 〉 and til〈ψpd,σ
i ψσ,pd

l 〉 as suggested by

Kuz’min [16]. However, assuming that ti,m〈ψpd,↑
i ψ↑,pd

m 〉 = ti,m〈ψpd,↓
i ψ↓,pd

m 〉, we can see that the

first two and the last two amounts in (1a) can be discarded. Further following Kuz’min sugges-

tion for third, fourth, fifth and sixth terms we get following expressions:

−
∑

Jile
−iqRitl,mψ

pd,↓
l ψ↑,pd

m Sz
i

=
1

2

∑

Jile
−iqRitl,mψ

↑,pd
m ψpd,↓

l

[

ψ↑,pd
i ψpd,↑

i − ψ↓,pd
i ψpd,↓

i

]

∼= 1

2

∑

Jile
−iqRitl,mψ

↑,pd
m

[

ψpd,↓
l ψ↑,pd

i ψpd,↑
i − 〈ψpd,↓

l ψ↓,pd
i 〉ψpd,↓

i

]

∼= −1

2

∑

Jile
−iqRitl,mψ

↑,pd
m ψpd,↓

i 〈ψpd,↓
l ψ↓,pd

i 〉

+
1

2

∑

Jile
−iqRitl,mψ

↑,pd
m ψpd,↓

l ψ↑,↑
i ,

(3a)

∑

Jile
−iqRitj,lψ

pd,↓
j ψ↑,pd

l Sz
i =

1

2

∑

Jile
−iqRitj,lψ

pd,↓
j ψ↑,pd

l

[

ψ↑,pd
i ψpd,↑

i − ψ↓,pd
i ψpd,↓

i

]

=
1

2

∑

Jile
−iqRitj,lψ

pd,↓
j ψ↑,pd

i 〈ψpd,↑
i ψ↑,pd

l 〉 − 1

2

∑

Jile
−iqRitj,lψ

pd,↓
j ψ↑,pd

l ψ↓,↓
i ,

(4a)

∑

Jile
−iqRiti,mS

z
l ψ

pd,↓
i ψ↑,pd

m =
1

2

∑

Jile
−iqRiti,mψ

pd,↓
i

[

ψ↑,pd
l ψpd,↑

l − ψ↓,pd
l ψpd,↓

l

]

ψ↑,pd
m

= −1

2

∑

Jile
−iqRiti,m〈ψpd,↓

i ψ↓,pd
l 〉ψpd,↓

l ψ↑,pd
m +

1

2

∑

Jile
−iqRiti,mψ

↑,↑
l ψpd,↓

i ψ↑,pd
m ,

(5a)
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−
∑

Jile
−iqRitj,iS

z
l ψ

pd,↓
j ψ↑,pd

i =
∑

Jile
−iqRitj,iS

z
l ψ

↑,pd
i ψpd,↓

j

∼= 1

2

∑

Jile
−iqRitj,i〈ψpd,↑

l ψ↑,pd
i 〉ψ↑,pd

l ψpd,↓
j − 1

2

∑

Jile
−iqRitj,iψ

↓,↓
l ψ↑,pd

i ψpd,↓
j .

(6a)

Keeping terms containing Jil〈ψpd,↑
i ψ↑,pd

l 〉 = Jil we have

−1

2

∑

Jile
−iqRitl,mψ

↑,pd
m ψpd,↓

i +
1

2

∑

Jile
−iqRitj,lψ

pd,↓
j ψ↑,pd

i

−1

2

∑

Jile
−iqRiti,mψ

pd,↓
l ψ↑,pd

m +
1

2

∑

Jile
−iqRitj,iψ

↑,pd
l ψpd,↓

j

= −1

2

∑

Jile
−iqRitl,mψ

↑,pd
m ψpd,↓

i − 1

2

∑

Jile
−iqRitj,lψ

↑,pd
i ψpd,↓

j

+
1

2

∑

Jile
−iqRiti,mψ

↑,pd
m ψpd,↓

l +
1

2

∑

Jile
−iqRitj,iψ

↑,pd
l ψpd,↓

j

+
1

2

∑

Jile
−iqRiti,lS

+
i − 1

2

∑

Jile
−iqRitl,iS

+
l .

(7a)

Next we turn to the Fourier components:

S+
j =

1

N

∑

S+
q e

iqRj , (8a)

ψpd,↑
j =

1√
N

∑

k

ψpd,↑
k e−ikRj . (9a)

After straightforward calculation the expression (7a) can be rewritten as

−1

2
(Jk+q − Jk)(tk+q − tk)ψ

↑,pd
k+qψ

pd,↓
k +

(

J1t1
)

[2− cos qx − cos qx]S
+
q . (10a)

Now, consider the remaining in Eqs. (3a)-(6a) four terms:

1

2

∑

Jile
−iqRitl,mψ

↑,pd
m ψpd,↓

l ψ↑,↑
i − 1

2

∑

Jile
−iqRitj,lψ

pd,↓
j ψ↑,pd

l ψ↓,↓
i

+
1

2

∑

Jile
−iqRiti,mψ

↑,↑
l ψpd,↓

i ψ↑,pd
m − 1

2

∑

Jile
−iqRitj,iψ

↓,↓
l ψ↑,pd

i ψpd,↓
j

∼= 1

2

∑

Jile
−iqRitl,m〈ψ↑,pd

m ψ↑,pd
i 〉ψ↑,pd

i ψpd,↓
l − 1

2

∑

Jile
−iqRitj,l〈ψpd,↓

j ψ↓,pd
i 〉ψpd,↓

i ψ↑,pd
l

+
1

2

∑

Jile
−iqRiti,mψ

pd,↓
i ψ↑,pd

l 〈ψpd,↑
l ψ↑,pd

m 〉 − 1

2

∑

Jile
−iqRitj,iψ

↑,pd
i ψ↓,pd

l 〈ψpd,↓
l ψpd,↓

j 〉.

(11a)

Let us start with the following:

1

2

∑

Jile
−iqRitl,m〈ψpd,↑

i ψ↑,pd
m 〉ψ↑,pd

i ψpd,↓
l +

1

2

∑

Jile
−iqRitj,l〈ψpd,↓

j ψ↓,pd
i 〉ψ↑,pd

l ψpd,↓
i

−1

2

∑

Jile
−iqRiti,m〈ψpd,↑

l ψ↑,pd
m 〉ψ↑,pd

l ψpd,↓
i − 1

2

∑

Jile
−iqRitj,i〈ψpd,↓

j ψ↓,pd
l 〉ψ↑,pd

i ψpd,↓
l .

(12a)

The largest terms are:

1

2

∑

Jile
−iqRitl,i〈ψpd,pd

i 〉ψ↑,pd
i ψpd,↓

l +
1

2

∑

Jile
−iqRiti,l〈ψpd,pd

i 〉ψ↑,pd
l ψpd,↓

i

−1

2

∑

Jile
−iqRiti,l〈ψpd,pd

l 〉ψ↑,pd
l ψpd,↓

i − 1

2

∑

Jile
−iqRitl,i〈ψpd,pd

l 〉ψ↑,pd
i ψpd,↓

l .

(13a)
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In the uniform lattice 〈ψpd,pd
i 〉 = 〈ψpd,pd

l 〉. Therefore, the first and fourth (second and third) do

cancel each other.

Now let us discuss the role of the three-site correlations. After Fourier transform these

terms are written as

1

2

∑

i,m

Jile
ikRiltlm〈ψpd,↑

i ψ↑,pd
m 〉ψ↑,pd

k+qψ
pd,↓
k +

1

2

∑

i,j

Jile
−i(k+q)Riltlj〈ψpd,↓

j ψ↓,pd
i 〉ψ↑,pd

k+qψ
pd,↓
k

−1

2

∑

l,m

Jile
i(k+q)Rliti,m〈ψpd,↑

l ψ↑,pd
m 〉ψ↑,pd

k+qψ
pd,↓
k − 1

2

∑

l,j

Jile
−ikRlitj,i〈ψpd,↓

j ψ↓,pd
l 〉ψ↑,pd

k+qψ
pd,↓
k .

(14a)

Performing summation over the square lattice we find

1

2

∑

i,m

Jile
ikRiltlm〈ψpd,↑

i ψ↑,pd
m 〉 − 1

2

∑

l,j

Jile
−ikRlitj,i〈ψpd,↓

j ψ↓,pd
l 〉

∼= J1t1

(

2〈ψpd,↑
0 ψ↑,pd

2 〉+ 〈ψpd,↑
0 ψ↑,pd

3 〉
)

(cos qx + cos qy)

−J1t1
(

2〈ψpd,↓
0 ψ↓,pd

2 〉+ 〈ψpd,↓
0 ψ↓,pd

3 〉
)

(cos qx + cos qy) = 0.

(15a)

Here 〈ψpd,↓
0 ψ↓,pd

2 〉 refers to the next nearest neighbor correlation. The hopping parameters t2=t02

and t3=t03 are not included into consideration.

Finally the anticommutator (1a) is written as follows:




∑

i,l

Jile
−iqRi(S+

l S
z
i − Sz

l S
+
i ),

∑

tj,mψ
pd,σ
j ψσ,pd

m





∼= J1t1 [2− cos qxa− cos qya]S
+
q − 1

2

∑

k

(

Jk+q − Jk

)

(tk+q − tk)ψ
↑,pd
k+qψ

pd,↓
k .

(16a)

Here is, of course, an addition decoupling factor β ∼= 1 is occurred, like factor α in Eq. (4).

Therefore here it is logical to change the definition J1 as follows

J1 = J1β〈ψpd,↑
0 ψ↑,pd

1 〉. (17a)

It should be noted that our result (16a) is different from those which presented in the original

paper [16] by factor 2. Furthermore, we do not approximate additionally the last term in

Eq. (16a). The system of self-consistent equations for Green’s functions can be obtained (see

the main text), using expression for aticommutator, as it is given by (16a). Entering correlation

functions in the normal state are calculated as follows

〈ψpd,↓
j ψ↓,pd

l 〉 = 1

N

∑

k,k′

〈ψpd,↓
k ψ↓,pd

k′ 〉e−ikRj+ik′Rl

= P
( a

2π

)2
π/a
∫

−π/a

π/a
∫

−π/a

cos
(

kxR
x
jl + kyR

y
jl

)

1 + exp
(

εk−µ
kBT

) dkxdky.

(18a)

For nearest neighbors it is written as:

〈ψpd,↓
0 ψ↓,pd

1 〉 = 4P

(

1

2π

)2
π
∫

0

π
∫

0

cos qx

1 + exp
(

εq−µ
kBT

)dqxdqy. (19a)

Here tetragonal symmetry in Cu-O plane is assumed.
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Appendix B

The Green’s function of itinerant part in Eq. (2) can be rewritten as follows [2]

∑

k

(tk+q − tk)〈〈ψ↑,pd
k+qψ

pd,↓
k

∣

∣S−
−q 〉〉

=
1

2

∑

k

(tk+q − tk)〈〈
[

ψ↑,pd
k+qψ

pd,↓
k − ψ↑,pd

k+qψ
pd,↓
k

]

ψ↑,pd
k+qψ

pd,↓
k

∣

∣S−
−q 〉〉.

(1b)

In equation (16a) the last term can be rewritten as

−1

2

∑

k

(

Jk+q − Jk

)

(tk+q − tk)ψ
↑,pd
k+qψ

pd,↓
k =

1

2

∑

k

(

Jk+q − Jk

)

(tk+q − tk)ψ
pd,↓
k ψ↑,pd

k+q

− 1

2N

∑

k

(

Jk+q − Jk

)

(tk+q − tk)S
+
q .

(2b)

In case of square lattice

− 1

2N

∑

k

(

Jk+q − Jk

)

(tk+q − tk) ∼= −2t1J1 (2− cos qxa− cos qya) . (3b)

Therefore the equation (16a) becomes




∑

i,l

Jile
−iqRi(S+

l S
z
i − Sz

l S
+
i ),

∑

tj,mψ
pd,σ
j ψσ,pd

m





∼= −J1t1 [2− cos qxa− cos qya]S
+
q

− 1

4

∑

k

(

Jk+q − Jk

)

(tk+q − tk)
[

ψ↑,pd
k+qψ

pd,↓
k − ψpd,↓

k ψ↑,pd
k+q

]

.

(4b)

Using (1b) and (4b) we get the following expression for spin response function

χ+,−
total =

χζtJ + [2J1K1 (2− γq)− χtJ ] ζ
[

1
2 + η

]

ζtJ +
[

ω2 − Ω2
q − J1t1 (2− γq)− ηtJ

]

ζ
, (5b)

where

η =
1

N

∑

k

ηk,q =
1

2
JqFJχ(ω, q)

− P

N

(

∑

Sxx
t′k+q(fk+q − 1/2) − t′k(fk − 1/2)

ω + iΓ + Ek − Ek+q

+
∑

Syy
t′k+q(1/2 − fk+q)− t′k(1/2 − fk)

ω + iΓ− Ek + Ek+q

+
∑

S(−)
yx

t′k+q(fk+q − 1/2) − t′k(1/2− fk)

ω + iΓ− Ek − Ek+q

+
∑

S(+)
xy

t′k+q(1/2 − fk+q)− t′k(fk − 1/2)

ω + iΓ + Ek + Ek+q

)

,

(6b)

as it was introduced in [2] and

ηtJ (ω, q) =
1

2N

∑

k

(tk+q − tk)
[

Jk+q − Jk − 2ω
]

ηkq. (7b)

Note the denominator of the dynamical spin susceptibility can be written also via η′(w.q) func-

tion. Corresponding expression for η′(w.q) in superconducting state can be found in Ref. [1]
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Appendix C

Spin-spin correlation functions.

The spin-spin correlation functions are calculated self-consistently via expression for the dynam-

ical spin susceptibility. It is useful to start discussion from the Fourier transform:

〈S−
i S

+
j 〉 =

1

N2

∑

q

〈S−
−qS

+
q 〉eiqRij . (1c)

Then to use Green’s function technique

〈S−
−qS

+
q 〉 =

∫

dω

eβω − 1
[〈〈S+

q

∣

∣S−
−q〉〉ω+iε − 〈〈S+

q

∣

∣S−
−q〉〉ω−iε ]

=
N

2πi

∫

dω

eβω − 1
[χ+,− (q, ω + iε)− χ+,− (q, ω − iε)]

=
N

π

∫

dω

eβω − 1
Imχ+,− (q, ω) .

(2c)

Since

Imχ+,− (q, ω) = − Imχ+,− (q,−ω) , (3c)

integration can be carried out only by positive values ω. Thus, one finds

〈S−
i S

+
j 〉 =

1

Nπ

∑

q

∫

dω

eβω − 1
Imχ+,− (q, ω) eikRij

=
1

π

( a

2π

)2
∫∫∫

[
dω

eβω − 1
Imχ+,− (q, ω)− dω

e−βω − 1
Imχ+,− (q,−ω)]eikRijdkxdky

=
1

π

( a

2π

)2
∫∫∫

cth

(

βω

2

)

Imχ+,− (q, ω) eikRijdωdkxdky.

(4c)

Sum rule.

The case i = j is used for self-consistent control. Since

ψ↓,↓
l + ψ↑,↑

l + 2ψpd,pd
l = 1 + δ,

ψ↑,↑
l − ψ↓,↓

l = 2Sz
l ,

(5c)

at 〈Sz
i 〉 = 0, and 〈ψpd,pd

l 〉 = δ one gets

1− δ

2
=

(

1

π

)3
π
∫

0

π
∫

0

∞
∫

0

cth

(

βω

2

)

Imχ+,− (q, ω) eiqRijdωdqxdqy. (6c)
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