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In order to establish an expression for the ferromagnetic resonance frequency of specimen with 
general shape, the Landau-Lifschitz-Gilbert differential equation was solved by considering 
demagnetisation effects and damping. By beginning the approach of calculation in a three dimensional 
space the sample was regarded as a uniformly magnetised ferro- or ferrimagnetic conventional 
ellipsoid. The condition for calculation must be a one-domain state which can be obtained by 
introducing a marked uniaxial anisotropy field and/or by applying an external magnetic saturation 
field. This can now be put on the level with a macro-spin precessing about its preferred direction. As a 
result, a more exact solution for the ferromagnetic resonance frequency was achieved which takes the 
phenomenological damping parameter as well as the demagnetisation factors into account. Applying it 
to certain sample shapes (plane, spherical or cylindrical) the uniaxial anisotropy field, the saturation 
magnetisation and especially the damping parameter show a different impact on the resonance 
frequency value. It could be shown that a plane sample (film) is more influenced by the damping 
parameter. 

PACS:  75.30.Gw, 75.40.Gb, 76.20.+q, 76.50.+g 
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1. Introduction 

In 1946, the ferromagnetic resonance (FMR) absorption was discovered by J. H. E. Griffiths [1]. The 
interaction of ferromagnetic solid state with alternating magnetic fields was thereupon theoretically 
described by C. Kittel [2]. In his work, he showed that there is a deviation of the ferromagnetic 
resonance frequency to the simple Larmor frequency of electrons with spin 1/2 in a homogeneous 
static magnetic field H, although, ferromagnetism in transition metals is determined by the electron 
spin. In measurements carried out by Griffiths, plane samples were employed which explained the 
difference between the frequencies. By introducing an effective magnetic field namely a “fictitious” 
field (B·H)1/2, where B is the induction, this anomalous behaviour could be explained. In a further 
work, Kittel showed a general description of the “lossless” ferromagnetic resonance frequency for an 
effective magnetic field which arises inside a general specimen underlying the demagnetisation 
effect [3]. At this point, we would like to settle the question how the “real” ferromagnetic resonance 
frequency in lossy samples behaves where damping plays an essential role. The Landau-Lifschitz-
Gilbert linear differential equation [4], which describes the motion of magnetic moments in an 
effective magnetic field, lends itself to calculate the lossy ferromagnetic resonance frequency. As a 
vector equation it allows to regard and apply an anisotropic material behaviour. In the following 
section we intend to derive a general ferromagnetic resonance frequency formula by solving the 
Landau-Lifschitz-Gilbert equation employing an analytical solution method for differential equations. 

2. Quasi-classical approach of the exact ferromagnetic resonance frequency absorption 

In order to theoretically describe the ferromagnetic resonance frequency fFMR at which any 
ferromagnetic sample absorbs the maximum magnetic high-frequency energy, C. Kittel [3] referred to 
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the simple lossless form of the Landau-Lifschitz equation [5]. This was an excellent approach if one 
considers damping as a negligible effect, and in quantum mechanics one obtains the same result for 
the resonance condition. But in reality and under certain conditions damping cannot be ignored which 
has already been proven in [6]. At this point and in order to obtain a more universal description of the 
FMR absorption, we try to make an approach by means of the well-established Landau-Lifschitz-
Gilbert (LLG) linear differential equation 

 eff
s

M M
M H M

t M t

  
       

    . (1) 

For convenience, eddy-currents are neglected, i.e., in the case of a ferro- or ferrimagnetic film, it 
must be thin enough and/or has to possess a sufficiently high resistivity [7]. In the case of bulk 
materials a high resistivity should be present. Finally, a minimised magneto-crystalline anisotropy, 
obtained by the material composition and the amorphous or nano-crystalline material state, is assumed 
for calculation. The essence of equation (1) is the effective magnetic field vector Heff inside the sample 

which obviously determines the precession of its total magnetic moment density J = M/, where  is 
the gyromagnetic constant. Assuming that the effective magnetic field possesses the main macroscopic 
components Hu, which is a field caused by the uniaxial anisotropy field, the high-frequency field h and 
the demagnetisation field Hd, we can write the effective magnetic field vector in the following form 
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The matrix elements which are the demagnetisation factors Nx, Ny and Nz in the diagonal 
demagnetization matrix N have to fulfil the requirement, Tr  1.N   If the exiting high-frequency field 
is sufficiently small it can be neglected for further calculations. By putting (2) into (1) LLG results in 
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For small amplitudes of the magnetic moment (h  0) it now makes sense to assume mz ~ Ms, if the 
material is uniformly magnetised in the z-direction by Hu and/or by an external magnetic field. 

Calculating (3) and eliminating xm t   and ym t   in the x- and y-direction, respectively, leads to a 

set of coupled linear homogeneous differential equations 
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 (4) 

In order to determine the ferromagnetic resonance frequency, we determine the coefficient of the time-
dependent exponent of the general solution for the first two equations in (4) by solving the determinant 
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As a result, one obtains a binomial equation 
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which generates two conjugate complex solutions for a damping constant  < 1. But equation (6) can 
then be converted into the more usable form 
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for which the discriminant represents the ferromagnetic resonance frequency condition for samples of 
general shape. It is exhibited in SI units as follows 
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and generically describes the ferromagnetic resonance frequency already obtained by [8] in an 
absolutely different way. From formula (8) we like to deviate the ferromagnetic resonance frequency 
for certain types of sample shapes which are predestined and often used for FMR experiments. 

I. Plane sample with lateral dimensions much larger than its thickness [6], Nx = Nz = 0, Ny = 1: 

 
 

2
2 2

FMR 0 u u2 42 1
s

s

M
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
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 
. (9) 

II. Spherical sample, Nx = Ny = Nz = 1/3: 

 
 FMR 0 u22 1

f H

 

 
. (10) 

III. Very long circular cylinder with radius much smaller than its length, Nx = Ny = 1/2, Nz = 0: 
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. (11) 

If an external magnetic field in the z-direction is applied it has to be added to the uniaxial anisotropy 
field Hu or can be substituted if the uniaxial anisotropy is not present. The following consideration and 

discussion are confined to Hu and  only. 
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3. Results and discussion 

By solving the LLG the ensemble of magnetic moments are considered as a magnetic macro-spin 
precessing about the direction at which it is oriented due to the uniaxial anisotropy field. This 
approach can be made without considering the microscopic ferromagnetic exchange field within the 
exchange length of a few nanometres, although, it is assumed parallel to the saturation magnetisation 
Ms. It is clear that it does not affect the spin precession within such a length scale because in the first 
place, it only causes the spontaneous magnetisation but not its preferred direction. For various sample 

shapes it is conspicuous that the uniaxial anisotropy Hu and the damping parameter  generate a 
different impact on the resonance frequency. If the uniaxial anisotropy is zero, e.g., (9) becomes 

imaginary and the equation does not bare any physical solution, except for  = 0 for which fFMR = 0. 
Overall real solutions are predicted by the equations (10) and (11). For spherical samples fFMR vanishes 

if Hu = 0. If  = 0 the resonance formula (10) reflects the pure Larmor frequency equation 0 = .Hu. 
Regarding the last case (III), the cylindrical sample shape, one can easily notice that there is a finite 
ferromagnetic resonance frequency for zero 
uniaxial anisotropy. This is evident due to 
the magnetic spin which is compelled into 
the z-direction by the strong demagnetisa-
tion effect, represented by the factors Nx 
and Ny. By it, a “demagnetization” 
anisotropy field along the remaining 
z-direction is automatically generated. In 
Fig. 1, the theoretical resonance conditions 
(I–III) dependent on Hu are depicted for a 

damping parameter  = 0.01 and a satura-
tion polarization Js = µ0·Ms = 1.4 T. 

A gyromagnetic constant  whose value 
was set to around 190 GHz/T and used for 
computation provides a g-factor of 
approximately 2 for spin-1/2 magnetism. 
The clearest non-linear change in fFMR on 
Hu can be seen for plane samples whereas a 
long cylinder remains insignificantly 
affected for small anisotropy fields. In 
spheres, fFMR linearly increases with Hu but 
shows the smallest ferromagnetic reso-
nance frequency increase. It can be 
observed that damping in plane samples is 
more pronounced than in spherical and 
cylindrical specimen, which pushes fFMR to 
lower frequency values (Fig. 2). The damp-

ing parameter  marginally diminishes the 
ferromagnetic resonance frequency for the 
latter only. This can be obviously inter-
preted by means of the demagnetization 
factors Nx and Ny. If Nx ≠ Ny they cause 
high demagnetization field, which slightly 
drives the magnetic moments in a more 
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dissipative precession with wave vector k ~ 0. This results in dissipation of energy due to a high 
perturbation from the strong demagnetisation in the y-direction which affects intrinsic damping 
mechanisms. In the case of Nx = Ny, a weaker demagnetization field does not extensively perturb the 
k = 0 precession for which the last term in the root of expression (8) disappears. Any additional impact 
of damping can now be excluded. 

4. Conclusions 

In the present paper, we have introduced a theoretic model for the ferromagnetic resonance frequency 
which includes the expression for damping by solving the quasi-classical Landau-Lifschitz-Gilbert 
differential equation of motion. This opens the access to an alternative approach of the ferromagnetic 

resonance frequency behaviour dependent on the damping parameter  which represents intrinsic and 
extrinsic precession damping mechanisms. The origin of these damping mechanisms has already been 
elaborately discussed, elsewhere. The all comprising and exact formula for fFMR now shows that it can 
be used for almost arbitrarily shaped samples. The most common specimen concretely treated above 
exhibit a representative cross section of samples often used in FMR experiments. Despite the 
“lossless” ferromagnetic resonance frequencies for these sample shapes are well known, the impact of 
damping shows, although quite small but measurable, some remarkable features. It could be 
demonstrated that the influence of damping can possess a different significance due to 
demagnetization effects. 

Concerning certain applications the frequency response imposed by the material and its shape 
should be known, which is an important magnitude for designing high-frequency devices like micro-
inductors and transformers with cores, magnetic sensors, magnetic storage components etc., and even 
for EMC issues. 
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