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Spin-magnon relaxation of Yb3+-ions in antiferromagnetic cuprate 
Y1−xYbxBa2Cu3O6+y 
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The spin relaxation of Yb3+-ions due to their coupling to antiferromagnetic spin waves existing in 
CuO2 planes in YBa2Cu3O6+y compound is reported. It is shown that it results in a strong temperature 
dependence of electron paramagnetic resonance (EPR) linewidth. The temperature dependence of 
EPR g-factor was also obtained and shows a good agreement with experimental data. 

PACS: 76.30.-v, 71.27.+a, 74.72.-h 
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1. Introduction 
The quasi-two-dimensional cuprates such as yttrium barium copper oxide YBa2Cu3O6+y (YBCO) 
whose properties are determined by electrons moving within weakly coupled copper-oxide (CuO2) 
layers attract much attention due to their transformation into high-temperature superconductors at high 
oxygen doping. The YBCO compound is characterized by large superexchange integral between 
nearest-neighbor Cu sites within the CuO2 layers ( 2000 KJ ≈  [1], 1700 KJ ≈ [2], 1400 KJ ≈  [3]), a 
rather strong coupling between the layers within a bilayer 1J  ( 2

1 / 4 10J Jδ −= ≥ ⋅  [1], 27 10δ −≥ ⋅  [3]), 

and an extremely small coupling to the next-nearest-layers 5 4
2 / 2 10 3 10J J − −≈ ⋅ − ⋅  [1, 3].  

Among the other techniques electron paramagnetic resonance (EPR) proves to be an effective tool 
for studying the properties and spin relaxation in cuprate superconductors [4]. The rare-earth ions are 
used as an EPR-probe due to the fact that the substitution of yttrium by isovalent rare-earth ions 
having local magnetic f-moments does not change the critical temperature Tc or other magnetic 
properties of the material considerably [5]. We analyze the EPR spectra of the YBCO compound 
doped by Yb3+ ions – Y1-xYbxBa2Cu3O6+y – at low oxygen doping ( 0.15y < ), while the CuO2 planes 
are not yet doped with the oxygen p-holes. 

The explicit expressions for the coupling of ytterbium ions with the antiferromagnetic (AF) spin 
waves in CuO2 planes and the indirect spin-spin interaction between the Yb-ions due to this coupling 
were obtained in [6]. The contribution of these interaction to EPR linewidth and g-factors was also 
studied. In this article we report the Yb3+ ions relaxation due to their coupling with the AF spin waves 
and the temperature dependence of EPR g-factor.  

It was shown in [6] that AF spin waves modes (due to the dipole-dipole interaction between copper 
ions) have the large energy gaps ~ 40 90 K∆ −  (at the Brillouin zone center) that are much larger than 
Zeeman energy. That forbids the one-magnon processes to contribute the Yb3+ spin relaxation due to 
the energy conservation law. Hence studying the spin relaxation we should consider the two-magnon 
processes only. 

We start this paper with the necessary brief description of the work [6] in Sec. 2. In the third 
section we derive the two-magnon part of Yb-Cu interaction Hamiltonian. The Sec. 4 describes the 
Yb-ions relaxation due to their coupling to AF spin waves and its contribution to the EPR linewidth. 
The last section gives the temperature dependence of EPR g-factor. 
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2. Spin excitations and electron paramagnetic resonance in two-layer antiferromagnetic 
system Y1−xYbxBa2Cu3O6+y 

It was shown in [1, 2] that four modes of spin waves are formed within the CuO2 planes at low oxygen 
doping while the Cu ions are in AF state: two acoustic and two optical ones. In [6] we studied the way 
dipole-dipole interaction between the copper ions and an external magnetic field (which is always 
applied in EPR experiments) contributes the energy gaps of the waves. The energy eigenvalues for 
acoustic modes are 
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The energy eigenvalues for optical modes are given by following expressions 
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Here the 
( )Cu sin
4

yB
b

J
ϕ

δ
= = −

+
, where φ is an angle by which Cu spins are rotated by the external 

magnetic field; ( ) ( )1/ 2 cos cosq x yq a q aγ  = +  , cos( );yq yq aγ =  4 4/ 2 10 7 10xy J Jα − −= ∆ ≈ ⋅ − ⋅  is a 

week planar anisotropy [1, 2], 2 2 3
1 3 / ,Bd g Jaµ=  2 2 3

2 3 / ,Bd g Jcµ=  2 2 3
3 3 / 4 2 ,Bd g Jaµ=  

2 2 2 5
4 3 /Bd g a JRµ=  with 2 2R a c= +  are the terms due to dipole-dipole interaction between 

Cu-ions; a = 3.85 Å is the distance between the nearest Cu-ions within the CuO2 planes and c = 3.38 Å 
is the distance between the bilayers. 

The eigenoperators for the modes have the form 
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with the coefficients 
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These spin waves modes all have the energy gaps, which are much larger than Zeeman energy. The 
smallest of the gaps belongs to the α-mode at the zone center (0,0)=q  and κ-mode at the zone-
boundary ( / , / )a aπ π=q  and has the value (0,0) ( / , / ) 44 K.E E a aα κ π π= ≈  One can see that 

0 3 Cu 04 BE J d g Hα µ≈  . It means that one-magnon processes are not involved in direct exchange 

between Cu and Yb-ions and studying the Yb-ions relaxation to AF spin waves we should take into 
account the two-magnon processes only. 

Actually there are other interactions contributing the energy gaps. But the main goal of the gaps 
calculation here was to understand whether they allow or forbid the one-magnon processes to 
contribute the relaxation. Even dipole-dipole interaction itself gives the gaps large enough to prevent 
the one magnon processes, so calculation of the other interactions contribution is unnecessary. 

Yb3+ ions placed between the CuO2 layers interact with the AF spin waves described above. The 
Hamiltonian of the interaction for the magnetic field oriented along the y-axis has the following 
form [6]: 
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 (5) 

Here , ,x y z
qY  is the Fourier-transform of the Yb spin operator; ac

qF  and op
qF  are form factors for the 

acoustical and the optical modes: 

 cos cos , sin sin .
2 2 2 2

y yac opx x
q q

q a q aq a q aF F= =  

The term (2)
YbCuH  quadratic in the boson operators, which is responsible for two-magnon processes, 

will be described below. 
Using this Hamiltonian the renormalized Zeeman energy can be written in the form 

 { }0 2 2 2 2 2 2
Yb 0 Yb Cu tot tot

1 11 , 0.614.
4B q q q q

q

AB H g g v v v v v v
J N α β η κµ   = − − = + + + ≈    
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The renormalized g-factors of the ytterbium ions due to their coupling with the AF spin waves were 
estimated in the following way: for the initial values of the Yb3+ g-factors the experimental values of 
the paramagnetic state 0 0

Yb 3.13g g= =


 (for the parallel orientation) and 0 0
Yb 3.49g g⊥= =  (for the 

perpendicular orientation) [7] were used. The compound 2 3 6.10.98 0.02Y Ba Cu OYb  is in paramagnetic state 
at oxygen doping 0.4y =  (where the AF state is suppressed, while the symmetry remains tetragonal). 
In formula (6) we use the typical g-factors of the copper ion in the tetragonal field with the orbital 
ground state of the type ( )2 2x y−  which are Cu 2.4g =  and Cu 2.1g⊥ ≈  for the parallel and 

perpendicular orientations of the external magnetic field, respectively [8]. The exchange coupling 
between the Cu and Yb ions was found to be 120 KA = −  [6]; we also use 1700 KJ =  [2]. Then the 
theoretical values of g-factors are th 3.27g =



 and th 3.61g⊥ = , which are quite close to the experimental 

values 3.23g =


 and 3.54g⊥ = .  

3. The two-magnon Yb-Cu interaction Hamiltonian 
The exchange coupling between the Yb-ions and AF spin waves within the CuO2-planes has initially 
the following form: 

 ( )YbCu 1 2 1 2
j a b b a

j j j j jH A ρ ρ ρ ρ
ρ

+ + + += + + +∑Y S S S S , (7) 

here ρ corresponds to the positions of the Cu-ions nearest neighboring the j-th Yb3+-ion, Yj is the spin 
of that ion. 

Following [6], we assume the field rotates the magnetizations of both sub-lattices slightly toward 
the y direction by the angle .ϕ  It is convenient then to turn the axes so that the new x-axis is directed 
along the corresponding magnetizations of the sub-lattices: 
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Using the standard Holstein-Primakoff formalism we make the following transformation for the 
layer: 
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with .z xS S iS± =   For the second layer the transformation is the same. Here ,  ,   ,  a a b b+ +  are the 
boson creation and annihilation operators for the two sub-lattices. Then we perform the Fourier 
transformation to the reciprocal lattice: 

 1/2 1/2exp( ), exp( ),q j j q j j
j j

a N a i b N b i− −= =∑ ∑qr qr  (10) 

where N is the number of unit cells in the bilayer. 
After these transformations the Hamiltonian has three parts. Two of them, the one not having the 

boson operators and the one linear in boson operators were given in (5). The term (2)
YbCuH  quadratic in 

the boson operators which is responsible for two-magnon processes has the following form 
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After the Bogoliubov transformation to the new creation and annihilation boson operators 
,  ,  , ,  , ,  , q q q q q q q qα β η κ α β η κ+ + + +  by using (3) the quadratic term takes the form 

(2)
YbCu Cu cos cos .

2 2
y yy x x

q q q q q q q q q q qq q q
qq

q qq qH Ab Y a a u uς ς ς ς ς ς

ς αβηκ

ς ς ν ν ς ς δ ν ν+ +
′ ′ ′ ′ ′ ′ ′− − −

′
=

′ −′  −    = + +        
∑  (12) 

4. Contribution of the two-magnon processes into EPR linewidth 
The contribution of two-magnon processes into the Yb-ions relaxation rate is estimated by the 
double-time Green functions method described in [9]. The double-time retarded Green function for 
two operators Y+  and Y−  ( z xY Y iY± =  ), which is used here, has the form  
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where ( )Y t+  and ( )Y t− ′  are Heisenberg representations of the operators  and  Y Y+ −  and 

{ }( ), ( )Y t Y t+ − ′  is the anti-commutator of these operators. 

The Hamiltonian we use has the form  
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Equations of motion for the Green function [9] are 
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Here we obtain the infinite chain of equations that could be solved in different ways: by decoupling 
[10] or a special perturbation theory [10, 11]. We use the one proposed by Izyumov [11]. 

Applying the equations of motion (14) to the Green function we obtain the formulas 
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Substituting the second equation into the first we have the expression for the Green function [11]  
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On the other hand if we compare it to the Dyson equation [11] (with a yet unknown eigenenergy 
part ( )EΣ ) expansion to the terms of the second order in ( )EΣ  
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we can see that 
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The imaginary part of this eigenenergy part gives the contribution of Yb-Cu interaction into the 
EPR linewidth. Calculating the energy part we should omit all the divergent terms of the form 

( )Yb
nE B −−  since they have already been taken into account by the structure of Dyson equation [11]. 

After the commutators calculation the imaginary part of (15) takes the form: 
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Here qn is magnon Bose-Einstein distribution ( ) 1
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 = −  . 

Using the formulas (4) and neglecting the dipole-dipole terms we can substitute the terms of the 

form ( )2

q q q qu uα β α βν ν′ ′+  by 

 ( )
222 1 (2 )1 1 .

2 4 4 4q q q q q q
q q

Ju u
E Eα β α β

α β

δ δ δν ν γ γ′ ′ ′
′

      + ≈ + + − + +              
 (17) 

In order to obtain the analytical formula for Im ( )EΣ  by (16) we use the linear dispersion law for 

the eigenenergies ,qE qς υ≈  where 2 .Jaυ =  It is reasonable since the EPR experiments were made 

at low temperatures where magnon frequencies are small enough to use the linear approximation 
typical for all antiferromagnets. Using this approximation and neglecting the small E  term (which is 
the frequency of Fourier transformation and is of the order of Zeeman frequency, and for 
EPR-experiments is much smaller than the magnons frequencies (1)) we can replace the δ-functions  
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in (16) by ( ) / .q qδ υ′−  We also suppose ( )exp / 1,q BE k Tς   which allows us to replace qn ς  by 

( )exp / .q BE k Tς−  Now using (16) and (17) we have 

 
( )2

2 4
2

2 2
0

4 1 1
16 2Im ( ) 1 exp ,

q q

B

J
A a qE dqq

q k T

δγ γ
υ

πυ υ

∞
  − + +      Σ = + − 
   
  

∫  

which, after the qγ  expansion and the integral calculation, takes the form 

 
3216Im ( ) .Bk TAT

J Jπ
 Σ ≈  
 

 (18) 

Calculating (18) for 40 KT =  (which is the lowest temperature used in EPR experiments for 
Y1−xYbxBa2Cu3O6+y [7]) we can see that at low temperatures contribution of two-magnon processes 
into the EPR line is negligible 1 G.Σ ≈  But it increases substantially with temperature (see Fig. 1). 

The numerical evaluation of (16) with the explicit form of qEς  taken into account shows that the 

approximations we made in the analytical formula are good enough to closely describe the more 
accurate values of Im ( )TΣ  (see Fig. 1). 

5. Temperature dependence to EPR g-factor 

Using the Hamiltonian (2)
YbCuH  given above (12) we obtain its contribution into the EPR g-factors for 

the ytterbium ions. The part of (2)
YbCuH  which doesn't contain the magnon operators has already been 

taken into account in (6). We now consider the other part, quadratic in magnon operators, which 
defines g-factors' temperature dependence. After we put q q′=  the renormalized Zeeman energy due 

to (2)
YbCuH  can be written in the following form 

0 50 100 150 200
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200

300

400

  

   -   numerical calculation by the formula (16)
   -   calculation by the analytical formula (18)

T, K

Im
Σ,

 G

 
Figure 1. The contribution of the two-magnon processes into EPR linewidth. Solid line describes the numerical 

calculation by the formula (16), dashed line is the calculation by the analytical formula (18). 
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( ){ }

( )

20 2
Yb 0 Yb Cu tot

, , ,

2

1 11 ,
4 4

1 .
4

B q q q
q

q q
k

AB H g g v u v n
J

Ju v
E

ς ς ς

ς α β η κ

ς ς
ς

µ

δ

=

  
  = − − − +      

 + = + 
 

∑

 (19) 

To calculate the sum in (19) we make the same approximations we did above for Im ( )TΣ  (see 
Sec. 4) but take the energy gaps as the lower limits of the integrals. It gives us the following 
approximate analytical expression: 

 

Yb 0 eff

0 2
eff Yb Cu tot

( ),

(0,0)(0,0)1 1( ) 1 exp exp .
4 4 2 2

B

B

B B

B H g T

EEk TAg T g g v
J J k T k T

βα

µ

π

=

      = − − − − + −               



 (20) 

We use the values of the energy gaps , (0,0)Eα β  obtained by (1) ( 44 K, 109 KE Eα β= = ). At 

40 KT =  the contribution of temperature-dependent part is negligible and it raises slightly with 
temperature. The calculated value of the g-factor at 40 KT =  ( th 3.61g⊥ = ) is a little higher than the 

experimental one ( exp 3.54g⊥ = ). To compare the temperature dependence we shift the theoretical 

points down by choosing 0 0
Yb 3.4g g⊥= =  in (19) instead of 0 0

Yb 3.49g g⊥= =  (which doesn't change 
the temperature dependence itself), see Fig. 2. Along with the analytically obtained result we also 
show the more accurate numerical calculation by the formula (19). 

As can be seen theoretical temperature dependence shows a good agreement with the experimental 
data. 
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  -  experimental points
  -  numerical calculation by the formula (19)
  -  calculation by the analytical formula (20)
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Figure 2. Temperature dependence of the resonance field (for H c⊥ ) in YBCO6.1 with 2% of Yb: 

experimental points are marked by squares, dashed line gives the numerical calculation by the 
formula (19) for 0 0

Yb 3.4g g⊥= =  and solid line is the calculation by the analytical formula (20). 
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6. Results and conclusions 
The contribution of the two-magnon processes to Yb-Cu interaction and EPR linewidth was 
considered. It is shown that these processes result into strong temperature dependence of the EPR 
linewidth, and being negligible at low temperatures give the considerable input as the temperature 
rises. The temperature contribution to EPR g-factor was also obtained which fits nicely the 
experimental data. 
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