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Spin kinetics in Kondo lattice with heavy fermions 
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We investigated the spin dynamics in the heavy fermion compounds YbRh2Si2 and YbIr2Si2. The 
contributions of the resonant and nonresonant parts of the total transverse magnetization to the 
electron spin resonance (ESR) parameters are analyzed for different orientations of the static and 
microwave magnetic fields. It is shown that at high temperatures, when the Kondo effect is absent, the 
nonresonant terms may be essential in the case of the perpendicular orientation of the static magnetic 
field to the crystal symmetry axis. In the presence of the Kondo effect the nonresonant parts do not 
make a significant contribution to the ESR parameters for any configuration of the magnetic fields. 

PACS:  72.15.Qm, 76.30.He, 75.30.Cr, 71.27.+a 

Keywords: electron paramagnetic resonance, Kondo lattice, heavy fermions, Kondo effect, collective spin mode 

1. Introduction 
The discovery of electron spin resonance (ESR) in the heavy fermion compound YbRh2Si2 [1] has led 
to considerable efforts, both theoretical and experimental, to understand Kondo lattice systems [2-10]. 
The ESR signal was observed well below the thermodynamically measured Kondo temperature 

K 25 KT ≈  [11, 12], where the magnetic moments are supposed to be screened by conduction 
electrons. Moreover, the expected ESR linewidth is of the order B K 2 500 GHzk Tν π∆ = = . The 
experimental results were completely opposite: at X-band (9.4 GHz) and 0.7KT =  a linewidth of 
0.3 GHz was observed. Similar results were obtained later for YbIr2Si2 [13, 14] ( K 40 KT ≈  [15]). 

Abrahams and Wölfle [2, 3] studied the ESR in heavy fermion systems using a Fermi liquid 
description in the framework of the Anderson model, where the local magnetic moment is that of a 
quasi-localized f-electron. Schlottmann [4] gave an explanation of the ESR signal existence based on 
the Kondo lattice model with an isotropic interaction between the conduction electrons and the Kondo 
ions. However, both of these approaches do not take into account the strong spin orbital interaction 
and the crystal electric field (CEF) effects which result in the anisotropy of the Kondo interaction 
similar to that of the Zeeman energy. On the contrary a semiphenomenological theory presented by 
Huber [5-7] takes into account the anisotropy of the static and dynamical susceptibilities. The author 
was able to describe the ESR data in Yb-heavy fermion compounds, especially their angular 
dependence, but the analysis did not touch the reasons of the ESR signal observability assuming it 
a-priori. 

In earlier works [16, 8-10] we proposed another approach to study static and dynamic properties of 
Kondo lattice systems. It is well known that unusual properties of heavy fermion compounds are 
determined by the interplay of the strong repulsion of 4f-electrons on the rare earth ion sites, their 
hybridization with wide band conduction d-electrons and the CEF effects. Recent angle resolved 
photoemission measurements [17] revealed the dispersion of the CEF-split 4f states due to f-d 
hybridization which was interpreted within the Anderson model. At the same time the rather narrow 4f 
band near the Fermi energy points out the quasi-localized nature of the f-electron motion. The ESR 
experiments also indicate the importance of local properties: the angular dependence of the g-factor 
and the ESR linewidth reflects the tetragonal symmetry of the CEF at the Yb-ion position. Starting 
from the entirely local properties of an Yb-ion in the CEF we investigated the static magnetic 
susceptibility of YbRh2Si2 and YbIr2Si2 at temperatures below KT  [16]. In other works [8-10] it was 
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shown that the collective spin motion of quasi-localized f-electrons and wide-band conduction 
d-electrons is the key ingredient for understanding the ESR signal existence in a Kondo lattice with 
heavy fermions. The strong coupling between the f- and d-electrons turned out to make a negligible 
contribution to the effective relaxation rate in the bottleneck regime. The ESR response is determined 
by the relaxation of the f- and d-electrons to the thermal bath rather than by their mutual relaxation. 
The peculiarities of the f-electrons band structure due to the f-d hybridization do not seem to be 
important for the study of the ESR phenomenon. Our model successfully explained the ESR data of 
YbRh2Si2 and YbIr2Si2 in terms of their dependencies on temperature and the orientations of the static 
and microwave magnetic fields. In this paper we present more accurate analysis of spin dynamics in 
Kondo lattice systems which takes into account all parts of the total dynamical susceptibility including 
the terms dropped previously as nonresonant ones. 

2. Basic model 
Our basic theoretical model includes the kinetic energy of conduction electrons, the Zeeman energy, 
the Kondo interaction between Yb-ions and conduction electrons and the coupling between Yb-ions 
via conduction electrons (RKKY interaction). 

We start from the local properties of an Yb-ion in the crystal electric field. A free Yb3+-ion has a 
4f 13 configuration with one term 2F. The spin orbital interaction splits the 2F term into two multiplets: 
2F7/2 with 7 2J =  and 2F5/2 with 5 2J = , where J denotes the value of the total momentum = +J L S  
with L  and S  as the orbital and spin momentum of the ion. The excited multiplet 2F5/2 is separated 
from the ground state 2F7/2 by about 1 eV. Since this value is much larger than the CEF energy, we 
consider in the following the ground multiplet only. 

Within the lowest multiplet the spin and orbital momentums of the ion are expressed via its total 
electronic momentum and the Lande g-factor :Jg  ( 1) ,Jg= −S J  (2 ) .Jg= −L J  In this way the 
Zeeman energy of Yb-ions can be written as follows 

 Z J i
i

H g= ∑BJ , (1) 

where B  denotes the external magnetic field multiplied by the Bohr magneton. 
The Kondo exchange coupling of the rare earth ion with the conduction electrons occurs due to the 

hybridization of their wave functions at the ion site. The exchange integral can be written in the form 
(see, e.g. [18]) 

 
2

*
4 1 4 1 1( , ) ( , ) ( ,..., ,..., ) ( , ) ( ,..., ,..., ) ...f i n i f n n

i i

eA d d dψ ψ′ ′ ′ ′ ′= Ψ Ψ
′−∑∫k k r k r r r r k r r r r r r

r r
. (2) 

Here ( , )ψ r k  is the Bloch wave function of the conduction electrons. The wave function of the 
4f-electrons 4 fΨ  is represented by the determinant constructed from the one-electron wave functions 

of the type 4 3( ) ( )m
f i iR r Y r . Expanding the Bloch functions and 1

i
−′−r r  in spherical harmonics, one 

can obtain ( , )A ′k k  as an expansion in multipoles. As a matter of fact the small parameter of this 
expansion is the value 4 1F fk r〈 〉 , the product of the wave vector of the conduction electron at the 

Fermi surface and an average radius of the 4f-electron. The Kondo interaction corresponding to the 
zero order of this expansion is isotropic and can be written in the form [19, 20] 

 K 0 ( 1)J i i
i

H A g= − ∑σ J , (3) 

where σi is the spin density of the conduction electrons at the ion site. The next terms of the expansion 
in multipoles are k-dependent and anisotropic (detailed calculations of them can be found in [21, 22] 
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and especially in [23]) but they are small and can be neglected. The same arguments can be used to 
derive the RKKY interaction between the Kondo ions: 

 2
RKKY RKKY( 1) ij

J i j
ij

H g I= − ∑ J J . (4) 

The tetragonal crystal electric field splits the ground multiplet into four Kramers doublets, each one 
described by the wave functions of the type |M

M
C Mψ± ±= ± 〉∑  (details see in [16, 24, 25]). Within 

each Kramers doublet the total electronic momentum of the Yb-ion can be represented by the effective 
spin 1 2S = : 

 z zJ Sγ=


,     , ,x y x yJ Sγ ⊥= , (5) 

where γ


 and γ ⊥  are given by 

 2 | |zJγ ψ ψ+ += 〈 〉


,     2 | |xJγ ψ ψ⊥ + −= 〈 〉 . (6) 

Since the first excited level is separated from the ground one by 17 meV (197 K) [26] and 18 meV 
(209 K) [27] in the cases of YbRh2Si2 and YbIr2Si2 the low temperature physics ( 200 KT  ) can be 
described by the lowest Kramers doublet. After projection onto the ground state the Zeeman energy, 
the Kondo interaction and the RKKY interaction take the form 

 Z ( )x x y y z z
s i i i

i
H g S B S B g S B⊥ = + + ∑



, (7) 

 ( )x x y y z z
s i i i i i i

i
H J S S J Sσ σ σ σ⊥ = + + ∑



, (8) 

 RKKY ( )ij x x y y ij z z
i j i j i j

ij
H I S S S S I S S⊥ = + + ∑



,  (9) 

where , ,Jg g γ⊥ ⊥=
 

, , 0 ,( 1)JJ A g γ⊥ ⊥= −
 

, 2 2
, RKKY ,( 1)ij ij

JI I g γ⊥ ⊥= −
 

. The anisotropies of the Kondo- 

and RKKY interaction are evidently related to that of the g-factor: 

 / /J J g g⊥ ⊥=
 

,     2 2/ /ij ijI I g g⊥ ⊥=
 

. (10) 

Although the experiment reveals the dispersion of the CEF levels in momentum space it does not seem 
to affect the principal line of our approach. Indeed, the projection onto the ground state is independent 
of the particular form of the wave functions ψ± . It is of no importance which of the four Kramers 
doublet is the lowest. The only requirement to derive the Hamiltonians (7)-(9) is the large energy 
interval between the ground doublet and the first excited level. This condition does not appear to 
contradict the experimental data [17]. 

The kinetic energy of conduction electrons and their Zeeman energy can be written as 

 c ij i j i i
ij i

H t c c c cλ λ λ λ
λ λ

µ+ += −∑ ∑ , (11) 

 Z i
i

H gσ σ= ∑Bσ . (12) 

Here 1λ = ±  labels the orientation of the conduction electron spin, µ  is the chemical potential,  
gσ  denotes the g-factor of the conduction electrons. The conduction electron density is expressed in 
terms of the creation and annihilation operators 

 i i ic cλλ λ λ
λλ

+
′ ′

′

= ∑σ s , (13) 

where λλ′s  are the matrix elements of spin operators s = 1/2. 
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To study the ESR response we also added the interaction of conduction electrons and localized 
moments with an external alternating microwave magnetic field perpendicular to the static magnetic 
field. Its Hamiltonian is 

 ( )mw mw mw mw mw
x x y y z z

i i i i
i i

H g g S b S b g S bσ ⊥
 = + + + ∑ ∑b σ



, (14) 

where mw 0 cos ;tω=b b  0b , ω  are the amplitude and frequency of the microwave field, respectively. 

Collecting all terms together we obtain the effective Hamiltonian which, after the diagonalization 
of the Zeeman part, takes its final form 0 RKKY mwsH H H H Hσ= + + +  with 

 0
z

ij i j i i sB i
ij i i

H t c c c c g B Sλ
λ λ λ λ

λ λ

ε+ += + +∑ ∑ ∑ , (15) 

 s i i
i

H J Sα β
σ αβ

αβ

σ=∑ , (16) 

 RKKY
ij

i j
ij

H I S Sα β
αβ

αβ

=∑ , (17) 

 mw mw
x x
i sb i

i
H b g g Sσσ = + ∑ . (18) 

Here 2,g Bλ
σε µ λ= − +  , , , ,x y zα β =  and sBg , sbg  are the g-factors of the system of localized 

moments along the direction of the static and microwave magnetic fields, respectively. The explicit 
expressions for sBg , sbg , Jαβ , ijIαβ  are defined by the special orientations of mwb  and B  to the 

crystallographic axes. In the following it is convenient to use a complex representation of the coupling 
constants: 

 1 1 1( ) , ( ), ( )
2 2 2xx yy yx xy z xz yz z zx zyF F F i F F F F i F F F i Fλλ λ λλλ λ λ λ λ′ ′ ′ = − + + = + = +   (19) 

with ,F J I= . 

3. The model of spin dynamics 
The ESR response due to the microwave magnetic field perturbation (18) is given by the total 
transverse dynamical susceptibility 

 1( ) ( );     , , ;     , ,
2

sλλ
αα

αα λλ

χ ω χ ω α α σ λ λ′
′

′ ′

′ ′= = = + −∑  (20) 

with partial susceptibilities ( )λλ
ααχ ω′

′ : 

 
2

2

,           ,

,      .

ss sb s sb

s sb

g S S g g S

g g S g

λλ λ λ λλ λ λ
σ σ

λλ λ λ λλ λ λ
σ σ σσ σ

χ χ σ

χ σ χ σ σ

′ ′ ′ ′

′ ′ ′ ′

= − = −

= − = −
  (21) 

Here A B  is the Fourier transform of a retarded Green function 

 [ ]
0

exp( ) ( ),A B i dt i t A t Bω
∞

= − ∫ , (22) 

,S  σ  are the total spin operators of Yb-ions and conduction electrons, ( ) / 2x yS S i Sλ λ= + , 

( ) / 2x yiλσ σ λσ= + , respectively, and 〈 〉  means the statistical average at temperature T.  
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The definitions (21) and (22) imply the symmetry relations 

 ( )( ) ( )λλ λ λ
αα α αχ ω χ ω′ ′

′ ′
∗ ∗= ,     ( ) ( )λλ λ λ

αα α αχ ω χ ω′ ′
′ ′= − , (23) 

where λ λ= − ; ω  is extended to the complex plane. 

It is usually accepted to take into account only resonant terms of the type χ−+  dropping χ+−  and 

χ++  as nonresonant ones, but this is not generally correct. Thus, if one of interacting subsystems (for 
example, conduction electrons) is in the thermodynamical equilibrium, the spin dynamics is described 
by the partial susceptibilities ss

λλχ ′  of the well known form 

 1( )ss s ssiχ ω ω−+ −− + Γ ,     1( )ss s ssiχ ω ω+− −+ − Γ , (24) 

where sω  is the resonant frequency of Yb-ions and ssΓ  is the Korringa relaxation rate. ssχ−+  and ssχ+−  
can be considered as resonant and nonresonant parts of the total susceptibility, respectively. For an 
isotropic system ssχ++  and ssχ−−  vanish and the ESR response is really given by the resonant part ssχ−+ . 

In the case of an anisotropic interaction ssχ++  and ssχ−−  may happen to be non-zero giving additional 

contributions to the total susceptibility. Although ssχ++  and ssχ−−  are small as compared with ssχ−+  they 
are of the same order of magnitude as the relaxation rate ssΓ  (the second order in the Kondo 
interaction), which can result in some corrections to the ESR linewidth. 

The problem of nonresonant terms becomes even more obscure when the subsystems of conduction 
electrons and localized moments are strongly coupled. Then the total susceptibility is determined by 
the collective spin motion and the partial susceptibilities are found as solutions of coupled equations 
which may lead to the form quite different from (24). Nevertheless, we can still consider the partial 
susceptibilities ααχ −+

′  as resonant if , 0αα ααχ χ++ −−
′ ′ =  and the equations of motion for ααχ −+

′  and ααχ +−
′  are 

not coupled with each other. However, for an arbitrary anisotropy of the Kondo interaction with non-
vanishing ααχ ++

′ , when all partial susceptibilities are coupled in a whole system of equations, it is rather 
difficult to separate resonant and nonresonant contributions in advance. In any case, it is worthwhile to 
confirm a tentative approximation with more accurate analysis. 

The calculation of partial susceptibilities leads to a set of coupled equations, which are convenient 
to write in matrix form 

 

0 0 0
0

ss s ss s ss s ss s ss

s s s s

ss s ss s ss s ss s

s s s s

a a a a P
a a a a P
a a a a
a a a a

σ σ σ σ

σ σσ σ σσ σ σσ σ σσ

σ σ σ σ

σ σσ σ σσ σ σσ σ σσ

χ χ χ χ
χ χ χ χ
χ χ χ χ
χ χ χ χ

−+ −+ −− −− −+ −+ −− −− −+

−+ −+ −− −− −+ −+ −− −−

++ ++ +− +− ++ ++ +− +−

++ ++ +− +− ++ ++ +− +−

   
   
   × =   
      
   

0 0
0 0 0
0 0 0

ssP
P

σσ

σσ

−+

+−

+−

 
 
 
 
  
 

 (25) 

with 

 ( ) ( )
2 2

, ,

, ,

, , , ;     , .

z zsb
s s s s

sb

z z
ss sb sb

a a
g ga S J a J
g g

P g S P g s

λλ λλ λλ λλ
αα α αα αα αα

λλ λλ λλ λλσ
σ λ λ σ σ λλ σ

σ

λλ λλ
σσ

ω λω

λ λ σ

λ λ σ α σ λ

′ ′ ′ ′
′ ′

= − + Σ = Σ

= 〈 〉 − Σ = 〈 〉 − Σ

= 〈 〉 = 〈 〉 = = + −

 (26) 

 
Here Jλλ′  is defined by (19),  

 W4( ) ( ), 2 ( ),z z
sBS g B T T O J g B O Jσσ ρ〈 〉 = − + + 〈 〉 = − +  (27) 

sω  and σω  are the resonant frequencies of Yb-ions and conduction electrons, respectively, containing 
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first order Knight shifts due to the Kondo- and RKKY interaction: 

 W4 , .z z z
s sB zz zzg B J T S g B J Sσ σω σ ω= + 〈 〉 + 〈 〉 = + 〈 〉  (28) 

WT  denotes the Weiss temperature which originates from the RKKY interaction in a molecular field 
approximation: 

 W
1
4

ij
zz

i
T I= ∑ , (29) 

and ρ  denotes the conduction electron density at the Fermi surface. 

The symmetry relations for the partial susceptibilities (23) and the equations (25), (26) give the 
symmetry relations for the kinetic coefficients :λλ

αα
′
′Σ  

 
( ) ( )( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ).

z

s sz

z

s sz

S

S

λλ λ λ λλ λ λ
αα αα σ σ

λλ λ λ λλ λ λ
αα αα σ σ

ω λλ ω ω λλ ω
σ

ω λλ ω ω λλ ω
σ

′ ′ ′ ′

′ ′ ′ ′

∗ ∗∗ ∗〈 〉′ ′Σ = − Σ Σ = − Σ
〈 〉

〈 〉′ ′Σ − = Σ Σ − = Σ
〈 〉

 (30) 

The partial relaxation rates are usually written as the imaginary parts of corresponding kinetic 
coefficients Im ( 0)iλλ λλ

αα αα ω′ ′
′ ′ Γ = Σ +  . However, if the Kondo- and RKKY exchange constants Jλλ′  

and Iλλ′  are complex it is more convenient to use the following definition: 

 1 ( 0) ( 0)
2

i iλλ λλ λλ
αα αα ααω ω′ ′ ′

′ ′ ′Γ = Σ + − Σ − . (31) 

When the Kondo interaction is isotropic or the static magnetic field is oriented parallel to the 
crystal symmetry axis the matrix elements aλλ

αα ′  and λλ
ααχ ′  vanish and the equation (25) is divided into 

two independent 2-by-2 matrix equations 

 
0

0
ss s ss s ss

s s

a a P

a a P

λλ λλ λλ λλ λλ
σ σ

λλ λλ λλ λλ λλ
σ σσ σ σσ σσ

χ χ

χ χ

     
× =          

     
 (32) 

with ,λ = + −  corresponding to resonant and nonresonant partial susceptibilities, respectively. In these 
cases the nonresonant contributions can well be ignored. Equations of the type (32) are usually used to 
study the collective spin motion of localized moments and conduction electrons [28, 29]. For an 
arbitrary orientation of the static magnetic field to the crystal symmetry axis aλλ

αα ′  and λλ
ααχ ′  may 

happen to be non-zero, what does not allow us to reduce the matrix equation (25) to two independent 
equations of the form (32). In this case resonant and nonresonant partial susceptibilities ααχ −+

′  and ααχ +−
′  

are coupled in the collective spin motion and the actual resonant contribution to the total susceptibility 
is found as a solution of the whole system (25). 

The kinetic coefficients ss
λλΣ  and λλ

σσΣ  describe the well known Korringa and Overhauser 
relaxations (Yb-ions relax to the conduction electrons being in the thermodynamical equilibrium and 
vice versa). Two additional coefficients s

λλ
σΣ  and s

λλ
σΣ  couple the equations of motion for the transverse 

magnetization of localized moments and conduction electrons. The new kinetic coefficients λλ
αα ′Σ  

provide the coupling between the resonant and nonresonant parts of the total magnetization. Besides, 
for a correct analysis of a stationary solution one has to take into account the spin relaxation of Kondo 
ions and conduction electrons to the thermal bath (“lattice”). Correspondingly, the kinetic coefficients 

ss
λλΣ  and λλ

σσΣ  should be replaced with ss sL
λλΣ + Σ  and L

λλ
σσ σΣ + Σ , respectively. The poles of the total 

susceptibility are determined by the condition 
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 det 0aλλ
αα

′
′ =  (33) 

leading to four complex roots, only two of which are resonant. Their real parts represent resonant 
frequencies and their imaginary parts represent the corresponding relaxation rates. Among the two 
resonant solutions we are interested in a pole close to the Kondo-ion resonant frequency, which 
describes the collective spin motion with the narrow ESR linewidth. Another resonant solution (close 
to the conduction electron resonant frequency σω ) gives the imaginary part too large to be observable 
by the ESR. The partial susceptibilities are found as the solutions of the system (25): 

1( )a Pλλ λλ λ λ
αα αα α αχ ′ ′ ′ ′−

′ ′ ′ ′= . One can see, that in the case of non-zero coupling terms λλ
ααχ ′  all parts of the total 

susceptibility, including the terms considered earlier as nonresonant, have the common resonant pole 
given by the equation (33). 

The coupling between conduction electrons and localized moments is especially important if the 
relaxation rate of conduction electrons toward the Kondo ions is much faster than to the lattice and the 
resonant frequencies are close to one another ("bottleneck" regime) 

 ,  L s
λλ
σσ σ σω ωΓ Γ − . (34) 

In this research the spin kinetics is studied for two special configurations of the static and 
microwave magnetic fields at the temperatures high compared with the static field (T B> ). At first we 
find the kinetic coefficients up to the second order in the Kondo interaction by means of the functional 
derivative method [30, 9], then the perturbational approach is improved with the Anderson's "poor 
man's scaling" technique [31]. 

4. The ESR parameters to the second order in the Kondo interaction 
In the case of the static magnetic field oriented parallel to the crystal symmetry axis c with the 
microwave field lying in the crystallographic plane (fig. 1a) the parameters of the effective 
Hamiltonian (15)-(18) takes the form 

 , ,sB sbg g g g⊥= =


 (35) 

 , , 0,zz z zJ J J J J J Jλλ λ λλλ ⊥= = = = =


 (36) 

 , , 0.zz z zI I I I I I Iλλ λ λλλ ⊥= = = = =


 (37) 

The calculation of the kinetic coefficients up to the second order in the Kondo interaction leads to the 
vanishing coupling between the resonant and nonresonant terms of the total susceptibility: 

, 0.aλλ λλ
αα ααχ′ ′ =  As it was mentioned above, in this case the resonant and nonresonant partial 

susceptibilities ααχ −+
′  and ααχ +−

′  can be considered separately and the resonant pales of the total 

susceptibility are determined by the terms of the type ααχ −+
′ . The partial relaxation rates are given by 

 

2 2 2

2

W

( ), ,
2

, ,

0, .
2 ( )

z

ss ssz
s

z

s s sz
s

z

z

ST J J

ST J J

gS
g T T

λλ λλ λλ
σσ

λλ λλ λλ
σ σ σ

λλ
αα

σ

π ω ρ
ω σ

ωπ ρ
ω σ

σ ρ

⊥

⊥

′

〈 〉
Γ = + Γ = Γ

〈 〉

〈 〉
Γ = Γ = Γ

〈 〉

〈 〉
Γ = =

〈 〉 +







 (38) 

The Overhauser relaxation rate λλ
σσΓ  is seen to be much greater than the Korringa relaxation rate ss

λλΓ  

due to the large value of the ratio 1z zS Tσ ρ〈 〉 〈 〉  . 
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The resonant poles of the total susceptibility are found from the condition det 0aαα
−+

′ =  (the full 

determinant in equation (33) is factorized as det det deta a aλλ
αα αα αα

′ −+ +−
′ ′ ′= ). Under the condition of the 

strong bottleneck regime (34) the imaginary part of the resonant pole corresponding to the relaxation 
rate of the collective spin mode reads as follows: 

 coll 2, , .
( )

s s s s
sL L ss L L ss ss

σ σ σ σ
σ σ σ

σσ σσ

−+ −+ −+ −+
−+

−+ −+

Γ Γ Γ Γ
Γ = Γ + Γ + Γ Γ = Γ Γ = Γ −

Γ Γ
     

     (39) 

The substitution of (38) into (39) yields the following expressions for an effective Korringa relaxation 
rate ssΓ  and an effective relaxation rate of conduction electrons to the lattice LσΓ



 : 

 
( )2 22 2

2
2 2 2 2

2
,

2

z

ss L L z

J J J J
T

J J S J Jσ σ
π σρ ⊥ ⊥

⊥ ⊥

−  〈 〉
Γ = Γ = Γ   + 〈 〉 + 




 

 

  . (40) 

For an isotropic system we have the well-known result [28]: the ESR linewidth in the bottleneck 
regime is greatly narrowed due to the conservation of the total magnetic moment (its operator 
commutes with the isotropic Kondo interaction and the latter disappears from the effective relaxation 
rate). In the opposite case of a strongly anisotropic Kondo interaction ( J J⊥ 

 ) our expressions do 

not show any sufficient narrowing of the ESR linewidth in the bottleneck regime, which coincides 
mainly with the results of the work [29]. Concerning the effective relaxation rate LσΓ



  it is greatly 

reduced against LσΓ  by the small value of the ratio z zS Tσ ρ〈 〉 〈 〉   and shows the linear temperature 
dependence similar to the Korringa relaxation. 

Next we consider the perpendicular orientation of the static magnetic field toward the crystal 
symmetry axis c with the microwave field directed at an arbitrary angle η  to the crystallographic 
plane (fig. 1b). The parameters of the effective Hamiltonian are written as follows 

 sBg g⊥= ,     2 2 2 2cos sinsbg g gη η⊥= +


, (41) 

 zzJ J⊥= , 1 ( )exp{ ( )}
2

J J J iλλ λλ λη λ ψ′ ⊥ ′ ′= − +


, 0z zJ Jλ λ= = , (42) 

 zzI I⊥= , 1 ( )exp{ ( ) }
2

I I I iλλ λλ λ λ ψ′ ⊥ ′ ′= − +


, 0z zI Iλ λ= = . (43) 

Here ψ  is the angle between a new quantization axis x and the crystallographic plane: 

 
Figure 1. Two special configurations of magnetic fields considered in this paper. B  and mwb  are the static and 

microwave magnetic fields, respectively. 

bmw 

B 

η 

c 

B 

bmw 

a 
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a 
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 tan tan
g
g

ψ η
⊥

=  . (44) 

The partial relaxation rates corresponding to the individual spin motions of the resonant and 
nonresonant components of the total magnetization are of the form 

 

2 2 2

2

W

(3 ), ,
4

( ), ,
2

.
2 ( )

z

ss ssz
s

z

s s sz
s

z

z

ST J J

ST J J J

gS
g T T

λλ λλ λλ
σσ

λλ λλ λλ
σ σ σ

σ

π ω ρ
ω σ

π ω ρ
ω σ

σ ρ

⊥

⊥ ⊥

⊥

〈 〉
Γ = + Γ = Γ

〈 〉

〈 〉
Γ = + Γ = Γ

〈 〉

〈 〉
=

〈 〉 +





 (45) 

Besides, for this particular configuration of the static and microwave magnetic fields we obtain the 
additional kinetic coefficients providing the coupling between the resonant and nonresonant 
components: 

 

2 2 2

2

( ), ,
4

( ), .
2

z

ss ssz
s

z

s s sz
s

ST J J

ST J J J

λλ λλ λλ
σσ

λλ λλ λλ
σ σ σ

π ω ρ
ω σ

π ω ρ
ω σ

⊥

⊥ ⊥

〈 〉
Γ = − Γ = Γ

〈 〉

〈 〉
Γ = − Γ = Γ

〈 〉





 (46) 

In the case of the strongly anisotropic Kondo interaction ( J J⊥ 

 ) the coupling between the resonant 

and nonresonant components become comparable with the coupling between the subsystems of the 
conduction and localized moments: the kinetic coefficients (45) and (46) are of the same order of 
magnitude. In this case the resonant and nonresonant terms can not be considered separately and the 
resonant poles of the total susceptibility (20) are determined by the equation (33). 

Under the condition of the bottleneck regime the relaxation rate of the collective spin mode can be 
written as geometrical mean of two relaxation rates: 

 
( ) ( ) ( ) ( )

(1) (2) ( ) ( ) ( ) ( ) ( ) ( )
coll ( ) 2 ( ), , , , 1,2.

( )

i i i i
i i i i i is s s s

sL L ss L L ss ssi i iσ σ σ σ
σ σ σ

σσ σσ

Γ Γ Γ Γ
Γ = Γ Γ Γ = Γ + Γ + Γ Γ = Γ Γ = Γ − =

Γ Γ
     (47) 

Here ( )i
αβΓ  represents the partial relaxation rate renormalized by the coupling between the resonant and 

nonresonant components of the total magnetization: 

 (1) (2), , , , .sαα αα αα αα αα αα α α σ−+ −− −+ −−
′ ′ ′ ′ ′ ′ ′Γ = Γ − Γ Γ = Γ + Γ =  (48) 

The expressions (47) and (48) are formally applicable to either of two configurations of the static and 
microwave magnetic fields considered in this research. In the case of the static field oriented parallel 
to the c-axis the coupling between the resonant and nonresonant components vanishes and 

(1) (2)
collΓ = Γ = Γ . When the static magnetic field is perpendicular to the crystal symmetry axis the 

partial relaxation rates (1)
αβΓ , after substitution of (45) and (46) into (48), take the form 

 (1) (1) 2 2 (1) (1) (1), .
z

ss s s ssz
s

ST Jσ σσ σ
ωπ ρ
ω σ⊥

〈 〉
Γ = Γ = Γ = Γ = Γ

〈 〉
 (49) 

The effective Korringa relaxation rate (1)
ssΓ , the effective relaxation rate of conduction electrons to the 

lattice (1)
LσΓ  and the relaxation rate (1)Γ  are given by 
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 (1) (1) (1) (1)0, , .
z

ss L L sL LzSσ σ σ
σ ⊥〈 〉

Γ = Γ = Γ Γ = Γ + Γ
〈 〉

    (50) 

The quantity (1)Γ  can obviously be identified as the relaxation rate of the collective spin mode in the 
case of an isotropic system, when the Kondo interaction makes no contribution to the effective 
relaxation rate. 

Similar operations with (2)
αα′Γ , (2)

ssΓ , (2)
LσΓ  leads to almost the same results as those obtained for the 

case of the parallel orientation of the static magnetic field to the c-axis (38)-(40): 

 (2) (2) (2) (2) (2), , .ss ss L L sL L ss

g
gσ σ σ

⊥

⊥

Γ = Γ Γ = Γ Γ = Γ + Γ + Γ
 

       (51) 

In this way, when the static magnetic field is perpendicular to the crystal symmetry axis, the relaxation 
rate of the collective spin mode is represented as 

 (1) (2) isotr
coll coll coll
⊥Γ = Γ Γ ≈ Γ Γ  (52) 

with (1)Γ  and (2)Γ  given by (50) and (51). The ESR linewidth is partly narrowed because the large 
contribution of the Kondo interaction to (2)

collΓ ≈ Γ  is reduced by the small values of the spin lattice 

relaxation rates sLΓ  and LσΓ  (if we put 0sL LσΓ = Γ =  the relaxation rate coll
⊥Γ  would be equal to zero 

too). This result can be predicted from general considerations: one of the transverse components of 
total spin operator ( y yS σ+ ) commutes with the effective Kondo interaction (16) when the static 
magnetic field is perpendicular to the c-axis. 

It is interesting to follow the variation of the ESR parameter with the orientation of the magnetic 
field (angle η  in fig. 1b). The ESR linewidth which is associated with the relaxation rate coll

⊥Γ  (52) 
and the resonant g-factor close to sBg g⊥=  are evidently independent of the angle η . This result 
agrees with experimental data on YbIr2Si2 [14]. 

Concerning the ESR intensity,  the situation is quite different. The total absorption intensity is 
determined by integrating the absorbed power of the microwave magnetic field mwb  which, in its turn, 

is related to the transverse dynamical susceptibility. The partial susceptibilities λλ
σσχ ′ , s

λλ
σχ

′ , s
λλ
σχ ′  are 

negligible as compared with ss
λλχ ′  due to the small value of the ratio z zSσ〈 〉 〈 〉 , hence, the main 

contribution to the ESR intensity is made by the term .ss
λλχ ′  Since the kinetic coefficients λλ

αα
′
′Σ  and the 

resonant frequency do not depend on the orientation of the microwave magnetic field, the only 
parameter of the dynamical susceptibility depending on the angle η  is the g-factor sbg . The angular 

dependence of the ESR intensity ( )I η  can be derived from the relation 2 2( ) (0) ( ) (0)sb sbI I g gη η=  
without integrating the absorbed power: 

 
2

2
2( ) (0) 1 1 sin

g
I I

g
η η

⊥

  
= − −      

 . (53) 

The equation (53) reveals a strong angular dependence of the ESR intensity: 2 2 400g g⊥ ≈


 and 
2 2 14g g⊥ ≈



 for the cases of YbRh2Si2 and YbIr2Si2, respectively. These values do not agree with the 

ratio (0) ( 2) 2I I π ≈  experimentally observed for both compounds. It seems to point out that our 
consideration does not take into account some factors that can reduce the large value of the  
ratio .g g⊥ 
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5. The renormalization of the ESR parameters 
At low temperatures the second order of the standart perturbation expansion is not sufficient, 
especially in the case of an antiferromagnetic coupling ( 0J > ): the higher order calculations show the 
logarithmic divergencies of the type ln( )T W , where W  is a conduction electron band width [9, 32]. 
The perturbation technique can be improved on the basis of the "poor man's scaling" method proposed 
by Anderson [31]. The main idea of this approach is to take into account the effect of the high energy 
excitations on the low energy physics by a renormalization of coupling constants. The original Kondo 
interaction sH σ  (16) is projected on to the low energy states yielding a Hamiltonian sH σ

  with new 

Kondo couplings J⊥
  and J



  (details see in [9, 10]). The renormalized parameters U Jρ⊥ ⊥=  and 
U Jρ=

 

 become temperature dependent: 

 sin , cot .U U U Uϕ ϕ⊥ = =


 (54) 

Here 2 2U J Jρ ⊥= −


, GKln( )U T Tϕ = , the abbreviation “GK” indicates the Kramers ground state 

and GKT  denotes a characteristic temperature given as follows 

 GK
1exp arccos

g
T W

U g⊥

  
= −  

  

 . (55) 

The quantities GKT  and U  are scaling invariant which do not change with renormalizing the 
Hamiltonian sH σ . Although the actual structure of the Fermi surface is rather complicated [33] we use 
the simplest approximation of the constant density of states for conduction electrons keeping in mind 
to study that temperature-magnetic field region where the heavy fermions are absent and the 
peculiarities of the Fermi surface are not important. 

We also suppose the anisotropy of the Zeeman energy to be the same as that of the Kondo 
interaction independently of the scaling procedure. The relation / /g g J J⊥ ⊥=

 

 (see (10)) converts, 
after renormalization, to 

 / /g g U U⊥ ⊥=
 

  . (56) 

Using the "poor man's scaling" method one can find the kinetic coefficients renormalized by the 
high energy excitations. In the case of the parallel orientation of the static magnetic field to the crystal 
symmetry axis the partial relaxation rates take the form 

 

2 2

2
2

W

1cot , ,
2

cos , ,
sin

0, .
2 ( )

z

ss ssz
s

z

s s sz
s

z

z

SU T

SU T

gS
g T T

λλ λλ λλ
σσ

λλ λλ λλ
σ σ σ

λλ
αα

σ

ωπ ϕ
ω σ

ω ϕπ
ω ϕ σ

σ ρ′

〈 〉 Γ = + Γ = Γ  〈 〉 

〈 〉
Γ = Γ = Γ

〈 〉

〈 〉
Γ = =

〈 〉 +


 (57) 

Substituting the renormalized relaxation rates (57) into (39) we obtain the relaxation rate of the 
collective spin mode 

 
22

2
coll 2 2

sin 2cos, , .
2 1 cos 1 cos

z

sL L ss ss L L zTU
Sσ σ σ

π ϕ σ ϕ
ϕ ϕ

 〈 〉
Γ = Γ + Γ + Γ Γ = Γ = Γ  + 〈 〉 + 
     

     (58) 

It is interesting to analyze the asymptotic behavior of the relaxation rates (57) and (58) upon lowering 
the temperature to GKT  ( 1ϕ  ). The partial relaxation rates logarithmically diverge at GK:T T→  to the 
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leading order in logarithmic terms they are of the form 

 2
GK

, .
ln ( )

z

ss s s ssz
s

T S
T T

λλ λλ λλ λλ λλ
σ σσ σ

ωπ
ω σ

〈 〉
Γ = Γ = Γ = Γ = Γ

〈 〉
 (59) 

At first glance, these results confirm the common belief that the ESR linewidth of Kondo ions (as well 
as conduction electrons) is expected to be too large for its detection. However, the coupling between 
the two systems makes the situation quite different. The effective Korringa relaxation rate is greatly 
reduced as compared with the second order result (40) (apart from the divergent partial relaxation rates 
(59)) and goes to zero at GK:T T→  

 4 2
GKln ( )

4ss TU T Tπ
Γ =

 . (60) 

Although the Kondo interaction is strongly anisotropic, the divergent parts of different kinetic 
coefficients cancel each other in the collective spin mode due to the existence of the common energy 
scale GKT  regulating their temperature dependence at GK .T T→  From the point of view of a 
renormalization formalism the Kondo interaction tends to be isotropic as affected by the scaling 
procedure. The renormalized effective relaxation rate of conduction electrons to the lattice LσΓ



  differs 
from the second order result (40) but slightly; its reduction is due to the small value of the ratio 

z zS Tσ ρ〈 〉 〈 〉   rather than to the Kondo effect: 

 
z

L L zSσ σ
σ〈 〉

Γ = Γ
〈 〉



 . (61) 

When the static magnetic field is perpendicular to the crystal symmetry axis, the renormalization of 
the kinetic coefficients corresponding to the individual spin motion of the resonant and nonresonant 
components of the total magnetization gives 

 

2 2

2
2

W

3cot , ,
4

1 , ,
4 sin ( 2)

.
2 ( )

z

ss ssz
s

z

s s sz
s

z

z

SU T

SU T

gS
g T T

λλ λλ λλ
σσ

λλ λλ λλ
σ σ σ

σ

ωπ ϕ
ω σ

π ω
ω ϕ σ

σ ρ
⊥

〈 〉 Γ = + Γ = Γ  〈 〉 

〈 〉
Γ = Γ = Γ

〈 〉

〈 〉
=

〈 〉 +

 (62) 

The kinetic coefficients providing the coupling between the resonant and nonresonant parts of the total 
magnetization take the form 

 

2

2
2

, ,
4

1 , .
4 cos ( 2)

z

ss ssz

z

s s sz

SU T

SU T

λλ λλ λλ
σσ

λλ λλ λλ
σ σ σ

π
σ

π
ϕ σ

〈 〉
Γ = Γ = Γ

〈 〉

〈 〉
Γ = Γ = Γ

〈 〉

 (63) 

The relaxation rates of the type λλ
αα ′Γ  logarithmically diverge at GKT T→  similarly to the case of the 

parallel orientation of the static field to the c-axis: 

 2
GK

, .
ln ( )

z

ss s s ssz
s

T S
T T

λλ λλ λλ λλ λλ
σ σσ σ

ωπ
ω σ

〈 〉
Γ = Γ = Γ = Γ = Γ

〈 〉
 (64) 

Asymptotic expressions for the relaxation rates of the type λλ
αα ′Γ , on the contrary, do not show any 

increase with lowering temperature and imitate the usual Korringa and Overhauser relaxation rates in 
the absence of the Kondo effect: 
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 2 , .
4

z

ss s s ssz
s

SU Tλλ λλ λλ λλ λλ
σ σσ σ

π ω
ω σ

〈 〉
Γ = Γ = Γ = Γ = Γ

〈 〉
 (65) 

One can see that the coupling between the resonant and nonresonant parts of the total magnetization 
becomes non-essential due to the Kondo effect: λλ λλ

αα αα′ ′Γ Γ  in contrast to the second order result (46) 

with λλ λλ
αα αα′ ′Γ Γ . It allow us to consider the resonant and nonresonant parts separately as in the cases 

of an isotropic system and the parallel orientation of the static magnetic field to the c-axis. 
The relaxation rate of the collective spin mode follows the equation (52) with renormalized 

relaxation rates (1)Γ  and (2)Γ : 

 (1) (2) (1) (2)
coll , , ,

z

sL L sL L ssz

g
S gσ σ
σ⊥ ⊥ ⊥

⊥

〈 〉
Γ = Γ Γ Γ = Γ + Γ Γ = Γ + Γ + Γ

〈 〉


 

   (66) 

where LσΓ


  and ssΓ  are given by (58). At GKT T→  the effective Korringa relaxation rate ssΓ  is much 

smaller than the spin lattice relaxation rates sLΓ  and LσΓ , which makes it possible to expand the 

square root (2)Γ  up to the first order in ssΓ . The result is 

 4 2
coll GK GK

1( ) , , ln ( )
2 8

z

sL L ss L L ss sszT T U T T T
Sσ σ σ
σ π⊥ ⊥ ⊥ ⊥ ⊥ ⊥〈 〉

Γ → = Γ + Γ + Γ Γ = Γ Γ = Γ =
〈 〉



     . (67) 

The ESR linewidth is seen to be narrowed even more than in the case of the parallel orientation of the 
static magnetic field to the c-axis: 2ss ss

⊥Γ Γ =

  , 1L L g gσ σ
⊥

⊥Γ Γ = >



   and 2sL sL
⊥Γ Γ ≈  as estimated in 

the work [10]. Such a dependence on the orientation of the static magnetic field is likely due to the 
partial breaking of the bottleneck regime condition in the case of the parallel orientation, when the 
inequality sσω ω  is fulfilled. 

Now we consider the angular dependence of the ESR parameters to be affected by the 
renormalization. The renormalized relaxation rate is still independent of the orientation of the 
microwave magnetic field as well as in the absence of the Kondo effect. The angular dependence of 
the ESR intensity becomes more smooth due to the renormalization of the g-factor components g⊥  
and g



 in accordance with (56). The equation (53) converts to 

 2 2( ) (0) 1 sin sinI Iη ϕ η = −  , (68) 

where ( )Tϕ  is defined by (54). The ratio (0) ( 2)I I π  is reduced to 21 cos ϕ  instead of the large 

values 2 2 400g g⊥ ≈


 and 2 2 14g g⊥ ≈


 in the cases of YbRh2Si2 and YbIr2Si2, respectively. 

6. Conclusion 
We investigated the spin dynamics in the heavy fermion compounds YbRh2Si2 and YbIr2Si2 taking 
into account the coupling between the resonant and nonresonant components of the total 
magnetization as well as the coupling between the conduction electrons and localized moments. 

The calculations to the second order in the Kondo interaction show that the picture of spin kinetics 
is strongly dependent on the anisotropy of the Kondo interaction and the orientation of the static 
magnetic field. When a system is isotropic or the static magnetic field is parallel to the crystal 
symmetry axis c, the coupling between the resonant and nonresonant components is absent and their 
spin motions can be considered separately. In this case the relaxation rate of the collective spin mode 
is determined by the resonant terms of the total transverse dynamical susceptibility. 
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If the static magnetic field is perpendicular to the c-axis and the Kondo interaction is highly 
anisotropic the resonant and nonresonant components are coupled as strong as the subsystems of 
conduction electrons and localized moments. This results in significant corrections to the effective 
relaxation rate as compared with the case of the vanishing coupling between the resonant and 
nonresonant terms. The Kondo interaction does not make a direct contribution to the ESR linewidth 
likely to the case of an isotropic system (its Hamiltonian commutes with a transverse component of the 
total spin operator). Although the indirect contribution of the Kondo interaction via the relaxation to 
the lattice still takes place, it is well reduced by the small values of the spin lattice relaxation rates, so 
that the ESR linewidth is narrowed as against the result obtained for the case of the parallel orientation 
of the static magnetic field to the c-axis. However, these conclusions are only valid at sufficiently high 
temperatures, when the Kondo anomalies are not important. 

The Kondo effect makes the picture of spin dynamics quite different. Upon lowering the 
temperature to GKT  the coupling between the resonant and nonresonant components of the total 
magnetization becomes negligible against the strong coupling between the conduction electron and 
localized moments. The spin motions corresponding to the resonant and nonresonant components can 
be considered separately again and the ESR linewidth is determined by the resonant terms for any 
configuration of the static and microwave magnetic fields. The great reduction of the effective 
relaxation rate at low temperatures is now due to the common energy scale GKT  which regulates the 
temperature dependence of different kinetic coefficients and leads to their mutual cancelation in the 
collective spin mode. 

Another point to discuss is the variation of the ESR parameters with the orientation of the 
microwave magnetic field (angle η  in fig. 1b). The relaxation rate of the collective spin mode does 
not depend on the angle η  both in the absence and in the presence of the Kondo effect. Concerning 
the ESR intensity it varies with the orientation of the microwave field rather sharply at high 
temperatures GKT T  but the Kondo effect leads to more smooth dependence due to the 
renormalization of the g-factor components g⊥  and g



. We should also note that the nonresonant 
terms do not seem to affect the ESR intensity, at least, so far as concerns its angular dependence. 

In conclusion, our research shows that nonresonant terms of the total susceptibility may affect the 
ESR parameters at high temperatures, when the Kondo anomalies are not important, but at lower 
temperatures the Kondo effect makes their contribution non-essential as against the resonant ones. 
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