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Interplay of classical and quantum spin dynamics* 
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Quantum and classical spin dynamics have more similarity than difference in theoretical part. Many 
processes can be described within general formalism where the type of dynamics became important at 
final steps only. The lecture is illustrated by consideration of operator perturbation theory and multi-
spin resonance transitions. 
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1. Introduction 

Classical spins behavior becomes of interest in connection with modern studies of magnetic resonance 
in magnetic nanoparticles (see for example [1-4] and references therein).  

Traditional consideration of quantum spin transitions in NMR and EPR [5, 6] was very different 
from analysis of ferromagnetic resonance [7], where motion of huge classical moment of total sample 
was used. The difference produces difficulties in comparison of corresponding results, especially for 
complex multi-spin and "multi-quantum" transitions.  

Modern theory of multi-spin transitions starts, probably, with treating of two-spin transitions in the 
book [8]. Most extensive consideration was fulfilled in Ref. [9], where several versions of the theory 
were constructed, and intensities of many transitions were calculated and compared with precision 
results of beta-NMR spectroscopy [10, 11]. The theory can be characterized as a quantum mechanical 
unitary operator perturbation theory, constructed in commutator form. It has many common properties 
with treating of multi-pulse narrowing methods of solid-state NMR [12, 13]. Main aim of the lecture 
consists in concentrated description of the theory in application to multi-spin transitions, which is 
equally applicable both to quantum and classical spin systems. The description produces shortest way 
to separation of quantum and classical effects in results of measurements. 

It should be stressed, that construction of quantum mechanical unitary operator perturbation theory 
started in first half of 20-th century. Probably it was initiated both internal requirements of quantum 
mechanics and analogies with canonical perturbation theory of classical mechanics (see Ref. [14] as an 
introduction for example). The influence of canonical classical mechanics was very strong from the 
beginning of the quantum theory. For example, quantum theory introduces new space of states instead 
of classical trajectories, but definition of operators in this space is strictly connected with Hamiltonian 
classical mechanics in Cartesian coordinates and prescribes a substitution of canonical momentum 

( , ) /L
• •

= ∂ ∂p q q q  (not kinematical one m
•
q !) by the operator  i= − ∂ ∂p q  as a quantization rule. Here 

( , )L
•

q q  is a Lagrangian as a function of Cartesian coordinate q and velocity .•q  We will use 
presumably units with 1=  and 1.c =  From mathematical point of view the quantum mechanical 
states form a Hilbert space, it will be referred to as Schrödinger space here in order to separate from 
Liouville space, discussed below.  
                                       
* This short review is prepared on base of invited lecture at XV International Youth Scientific School "Actual 

problems of magnetic resonance and its application", Kazan, 22 – 26 October 2012 
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Separation of canonical and kinematical momentums gives a possibility to take into account 
magnetic field, because (in simplest case) the Hamiltonian 

 ( )
2

21 1( , ) ( ) ( ) ( )
2 2

H L m U e U
m

• • = − = + = + + 
 

p q qp q q p A q q . 

Here A(q) is a vector-potential, e is electrical charge, and U(q) is scalar potential energy. With more 
general definition we have canonical momentum as ( ) / ,p S q qµ

µ = ∂ ∂  where  

 
0 0 0

( ) ( , )
t q

S q d H dt p dqµ
µ= − = −∫ ∫ ∫

q
p q p q  

is an action as a function of final 4-dimentional coordinate ( , )q tµ = q  and integration is carried out 

along real trajectory. This definition produces the same space components p  of the 4-momentum ,pµ  

and new component 0 ( , ).p H= − p q  Therefore, applying the same quantization rule to canonical 

momentum 0
0 ( , )p p H= = − p q  we have two different definitions for corresponding momentum 

operator:  0p i
t
∂

= −
∂

 and  

0 ( , ).p H= − p q  For compatibility we should require their coincidence in 

action on realizable state ,ψ  that produce the main equation of the quantum theory − Schrödinger 

equation ( , ) .i H
t
ψ ψ∂

=
∂

p q  This short excursion demonstrates exclusive importance of canonical 

classical mechanics for foundations of the quantum theory.  
Unitary transformations form one of the most important sections of quantum mechanics. Nowadays 

workers know and understand it, as a rule, much better than canonical transformations in classical 
theory. Similar education effect is known for a long time; it was indicated, for example, in the 
"Introduction" in Ref. [15]. Therefore our consideration will be based on unitary transformations in 
Liouville space, which can be considered as necessary and usual extension of standard Schrödinger 
quantum mechanical space or natural space for classical dynamics, based on Liouville equation for 
distribution functions. In quantum mechanics Liouville space is formed by density matrices or by 
usual operators of Schrödinger space. 

2. Perturbation theory. General outlines 

Absolute majority of interesting theoretical problems have no exact solutions. Perturbation theory 
produces a possibility to receive approximate (and verifiable in an experiment) result starting from 
exactly solvable simplified problem. From my point of view the best perturbation theory for spin 
dynamics consists of two very different parts. First part is directed on simplification of the 
Hamiltonian up to form, suitable for application in derivation of a master equation, which produces 
description of evolution of observables. The master equation derivation forms second part of the 
perturbation theory. This strategy has long history, and its elements can be found, for example, in 
Refs. [8] and [16]. 

Evolution both quantum and classic systems is governed by Liouville equation 

 ,iL
t
ρ ρ∂
= −

∂
 (1) 

where ρ  is density matrix or distribution function in quantum and classical theory respectively.  
In quantum case the Liouville operator L (Liouvillian) is defined as 

 [ ], ,L H H Hρ ρ ρ ρ= = −  (2) 
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while in classical mechanics 

 { } 1 1
, .N d

j
j j j j

H H H HL i H i i
p q q p p q q pα α α αα

ρ ρ ρ ρρ ρ
= =

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= − = − − = − −    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   

∑ ∑  (3) 

Here N is a number of considered particles, while d is space dimension. 
Eqs. (1)-(3) unify main equations of motion of quantum and classical theory. A tendency to such 

unification existed from the beginning of quantum mechanics. Partially one of form of main 
quantization postulate consists in substitution of Poisson bracket of canonical variables by the operator 

commutator according the same rule { } , , .j k jk k jkjp q i p q
αα β β

αβ αβδ δ δ δ = → =  
 Heisenberg equations of 

motion have the same similarity to Hamilton equations.  
From operator point of view the Liouvillian L  is a Hermite operator in a new (relative to 

Schrödinger space) Hilbert space (Liouville space), where density matrices and other quantum 
mechanical operators works as vectors, while in classical theory Liouville space is formed by 
distribution functions and other functions in the same way. The Liouville operator is hermitian relative 
to scalar production ( ), Tr( )a b a b+=  or ( ),a b dpdq a b+= ⋅∫  in quantum and classical theory 

respectively.  
Formal Nakajima-Zwanzig derivation of master equation starts from separation of a small, but 

important part 1ρ  of ,ρ  which is sufficient for calculation of observables. In simplest case this 
operation is introduced by a time-independent projection operator P  and 

 1 ,Pρ ρ=   2 .P P=   (4) 

Multiplying Eq. (1) on P  we have 

 ( ) ( )1 1 2 ,P iPL P P i PLP PLP
t t
ρ ρ ρ ρ ρ∂ ∂

= = − + = − +
∂ ∂

 (5) 

where 

 ( )2
2 ,     1 ,    ,P P P P Pρ ρ= = − =  (6) 

and, evidently, 

 ( ) ( )2 1 2 .iPL P P i PLP PLP
t
ρ ρ ρ ρ∂

= − + = − +
∂

 (7) 

Solving Eq. (7) with initial condition 2 ( 0) 0tρ = =  and substituting the solution into Eq. (5) we 
receive a master equation  

 ( ) ( )1 1 10
,

t
i d M t

t
ρ ρ τ τ ρ τ∂

= − Ω −
∂ ∫  (8) 

with definitions of frequency matrix Ω and memory kernel ( , )M t τ : 

 ( )( )1 1,    ( , ) ( ) exp ( )
t

PLP M t PL t P T i d PL P PL P
τ

τ τ τ τΩ = = ⋅ − ⋅∫ . (9) 

Here standard chronological exponent (Texp) is introduced. 
These formal operations are well known and equally applicable both for quantum and classical 

theory. Real calculations require reasonable approximations for memory kernel which can depend on 
type of dynamics and we will not discuss them later.  
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We will concentrate our attention on the first part of perturbation theory consisting of 
simplification of the Hamiltonian. We will consider the Hamiltonian of the form 

 ,    .mi t
m m mm

H H e H Hω +
−= =∑  (10) 

As a rule the representation (10) is a consequence of application of so called representation of 
interaction, when strong but exactly solvable part of the evolution is excluded from the equation of 
motion, and all terms in (10) have the same order of value, while many of frequencies mω  are large.  

We come to this representation, for example, in discussion of resonances at frequencies, obeying 
the condition .Ik mω ω=  Here k and m are integer, and Iω  and ω  are Larmor frequency and 
frequency of alternating field. The transitions can take place, for example, in homo-spin system 
formed by spins I , placed in strong static magnetic field (directed along z-axis with value Iω ) and 
orthogonal it radio-frequency field with value 1Iω  (we use frequency units for magnetic fields) in 
presence of dipole-dipole interactions. The terms mH  at that represent so called Van Vleck’ alphabet 
[5, 7] (with corresponding frequencies { } 0, , 2m I Iω ω ω= ± ± ) and rf-interaction (with frequencies 

( )Iω ω± − ) in the system, rotating with the frequency Iω  around the static field. Other example is 
produced by nuclear or electron spins in presence of quadrupole interaction 

 ( ) ( )2 1 1
3Q QH I Iω  = − + 

 
nI  (11) 

and static magnetic field, if .Q Iω ω  The Hamiltonian (11) produces the same set of primary 

frequencies mω  as homo-spin dipole interaction. More complex examples together with solutions can 
be found in Refs. [9-11]. 

The aim of considered perturbation theory consists in such transformation of the Liouville 
equation, which conserve Hamilton form (2) of the main equation (with a new Hamiltonian) and 
suppress fast oscillating terms of the Hamiltonian. Slow oscillating terms should be treated via master 
equation.  

Very important property of the theory consists in the fact, that new (transformed) Hamiltonian is 
constructed from powers of commutations (or Poisson brackets) that automatically produce no volume 
divergences.  

Other important property is specific for spin dynamics, where spin variables are included only 
instead of full set of coordinates and momenta, and main quantum mechanical (QM) commutators are 
in exact agreement with Poisson brackets of classical mechanics (CM) again: 

 , .j k jk kI I i e Iα β γ
αβγδ  =    (12) 

Here jIα  is α  component of j-th spin, and [ ],a b  means the commutator of operators a and b in 

quantum mechanics, or [ ] { }, ,a b i a b= −  in classical theory. A summation is meant in (12) over index 
γ  on right side, which is absent on left side. With these notations Eqs. (1)-(3) can be written as 

 [ ],iL i H iH
t
ρ ρ ρ ρ×∂
= − = − = −

∂
 (13) 

both in quantum and in classical theory, and the operation [ ],a b  will be referred as commutator in 
both theories, if it will not require additional refinement. Last relation in (13) can be written as 

,L H ×=  and it indicates that operator L in Liouville space (superoperator) is formed by H via 
commutator that is rather special form for superoperators. 
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3. Unitary operator perturbation theory 

We can separate the Hamiltonian (10) (and corresponding Liouvillian) into fast (F) and slow (S) 
oscillating parts: 

 
| | | |

( ) ( ) ( ),    ( ) ,   ( ) .m m

m m

i t i t
S F S m F mH t H t H t H t e H H t e Hω ω

ω ω<Ω >Ω
= + = =∑ ∑   (14) 

The boundary frequency Ω should be defined later from the requirement of self-consistency of 
calculations.  

We can introduce a new variable (1) ( )tρ  via unitary transformation in Liouville space 

 ( )(1) (1)
| |

1( ) ( ) ( ) exp ( ) ( ),   ( ) m

m

i t
m

m

t U t t iS t t S t e H
i

ω
ω

ρ ρ ρ
ω

× × ×
>Ω

= = − =∑ . (15)  

In action on typical states, for example on jIα  or j kI Iα β , the superoperator mH ×  produces finite result 

even for infinite systems, when number of spins .N →∞  Therefore  

 ( ) /FS t H ε× × Ω    (16) 

can be considered as small value proportional to small parameter ε .  

It is evident that ( ) / ( )FS t t H t× ×∂ ∂ = , and equation of motion for (1) ( )tρ  does not contain fast 
oscillating terms in main order in ε: 

 (1) (1) ( ).SiH O
t
ρ ρ ε×∂

= − +
∂

 (17) 

More exactly 

 (1) (1) (1) (1),    .iL L U LU iU U
t
ρ ρ

•
+ +∂

= − = +
∂

 (18) 

It is evident, that  

 ( ) ( )(1) (1) (1)

0 0
, , .U LU U H U U Hρ ρ ρ+ + +   = =     (19) 

Here a symbol ( )(1)

0
Uρ  (or ( )

0
U H+ ) means, that action of superoperators U  (or U + ) is concentrated 

within the bracket, and the result is a vector in Liouville space.  
Differentiation of the exponential operator ( )U t  is a standard action (see for example [9] or 

Appendix in [17]) with a result 

 ( )1 1

0
.i SiS i Se i d e S e

t
ααα

×× × • −×∂
=

∂ ∫  (20) 

Therefore 

 
( ) ( )

1 1(1) (1) (1)

0 0

1 1(1) (1) (1)

0 00 0
0

1, , , .

i S i S i S i S
F

iS
i S i S i S

F F F

U U i d e S e i d e H e

ei d e H e i d e H i H
iS

α α α α

α α α

ρ α ρ α ρ

α ρ α ρ ρ

× × × ×

×
× × ×

• •
+ × − × −

−
×

= =

  −   = = =               

∫ ∫

∫ ∫
 (21) 

We see that new Liouvillian (1) (1)L H ×=  is formed of new Hamiltonian according to relations (18), 
(19) and (21) as 
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 (1) (1) (1) (1) (1) (1) (1) 1, ,     
iS

iS
F

eL H H H e H H
iS

ρ ρ ρ
×

××
×

− = = = −  . (22) 

The transformation from Eqs. (13) and (14) to (18) and (22) defines an iteration method, which can be 
continued later. At every step of iterations fast oscillating term of the Hamiltonian is suppressed, and 

new slow oscillating terms are created. After n steps the fast oscillating term has an order ( ) 2nn
FH ε  

as in super-convergent classical Kolmogorov-Arnol’d-Moser theory. But, for typical conditions, 
relaxation speed ( )n

Fw , produced by ( )n
FH , is not smaller than the speed ( 0)n

F Fw w == , calculated directly 

from 0
FH ε  [8, 9]. There is no contradiction here, because, as a rule, | ln | 1 / ,n

Fw ε  while the 

iterations display the power accuracy ( )2
2n

ε  for ( )n
Fw  only [9]. 

Main result for applications is concentrated in effective Hamiltonian of slow motions eff
SH  

presented by slow part of the new Hamiltonian, because it contains new terms relative to initial SH . 
Two iterations produce accuracy up to ε3 and [9] 

 
( ) ( ) ( )( )
( )( ) ( )( )( ) ( )

(2) 4 2 3 2 31 1
2 6 2 3 8

41 1
2 2 20 0

1

, .

eff i i i
S S S F S

i
S F S FF F S

H H O S S H S S S H

S H H S H H O

ε

ε

× × × × ×

× ×

= + = − − + − −

 − + + +  

  (23) 

Here  ( ) ( )exp /m m mm
A A i t iω ω=∑  for ( )exp ,m mm

A A i tω=∑  the symbol ( )0
  is introduced in (19), 

and subscripts S and F indicate separation of slow and fast oscillating parts, as in (14). Main attention 
of many workers was attracted to situations, where instead of separation of slow part of the 
Hamiltonian the time averaging can be used. Corresponding result with accuracy up to 2ε  was 
received in Refs. [18, 19], it was repeated for spin dynamics in [13], and the accuracy was refined up 
to 5ε  in Ref. [20].  

4. An example 

Let us consider a resonance at the frequency 2 Iω ω=  in homo-spin system, produced by dipole 
interactions as an example. The Hamiltonian can be written as 

 ( ).Z D rfH H H H t= + +   (24) 

Here Z I zH Iω=  is Zeeman interaction, DH  is dipole-dipole Hamiltonian and  

 ( )1
12( ) i t i t

rf IH t I e I eω ωω −
+ −= +  (25) 

represents the action of resonance alternating field. Main influence on resonance at the frequency 
2 Iω ω=  is produced by so called C-term of DH : 

 
( )( )
( )2 2

3

1
2

3
4

. . ,

sin 2 ,      , ,jk

jk

z z
jkDC jk j k j k C C

i
jk jk Z C I Cr

H c I I I I H C H H

c e H H Hφγ ϑ ω

+ + + +

± ±

= + + = +∑

 = − = ± 


 (26) 

where polar angles jkϑ  and jkφ  define direction of the interspin vector jkr . 

Effective Hamiltonian of slow motion will include secular part of dipole interactions 0DH  and, 
according to (22), a resonance term 
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[ ] ( ) ( )( )


( )
( ) ( )( )

1

1

1( ) , ,    ,
2 2

.
2

I II I

I I
I I

i t i ti t i t
res F F C C IS

i t i t
i t i tI

F C C
I I I

iH t S H H H e H e I e I e

e eS H H H I e I e
i i i

ω ω ω ωω ω

ω ω
ω ω ω ω

ω

ω
ω ω ω ω

− − −−+ −
+ −

−
− − −+ −

+ −

= = + + +

= = − + −
−

 (27) 

After simplifying  

 
( )

( )

( ) ( )

21

21

( ) . . ( ) ( ),
4

( ) ,   ( ) ( ) .
2

I

I

i tI
res jk j k r rjk

I I

i tI
r jk j k r rjk

I

H t e c I I H C H t H t

H t e c I I H t H t

ω ω

ω ω

ω ω
ω ω ω

ω
ω

− + + + −

+−+ + + − +

= + = +
−

≈ =

∑

∑
 (28) 

In the simplest theory (neglecting the influence of dipole order) important part of the density matrix 
can be chosen as a function of zI  only and master equation (8) after standard transformations became 
a form  

 
( ) ( )

( ) ( )0 0

1 10
, , , , ( ) ,

, .D D

res res

iH t iH t
res res

d H t t H t t t
t

H t e H e

ρ τ τ τ ρ

τ τ

∞∂  = −  − −   ∂
=

∫   (29) 

Correspondingly  

 
( ) ( ) ( )( )

( ) ( )( )
1 10

2
1

, , , , , , ( )

2 ,0 , , .I

z z z res res

i
r r

I I d I H t t H t t t
t t

d e H Hω ω τ

ρ τ τ τ ρ

τ τ ρ

∞

∞ − + −

−∞

∂ ∂  = = −  − −   ∂ ∂

 = −  

∫

∫
 (30) 

Here scalar production in Liouville space is applied and the relation , 2Z r I rH H Hω± ±  = ±   is taken into 

account.  

One of most representative parameter of resonance at combination frequency Ikω ω=  is its 

forbidding factor ( )IA kω ω= . To define it we can introduce a measurable parameter 

 ( ) 0
0 0

0

4 ,
2 lim ln ,

r r

I t z
z

H H
W d I

t I

π
ω ω ω

+ −

→

 ∂  = = − =
∂∫  (31)  

which presents intensity of the resonance. Here ( )10
, ( 0)F F tρ= =  for any .F F +=  The argument 

2 Iω ω=  on the left side in (30) indicates type of the resonance, while frequency integration in second 
term is fulfilled near the resonance frequency 2 Iω  and does not include resonances of other types, 
which are supposed as well separable. The limit 0t →  in (31) implies small 2 ,t T  according to 
applicability of Eq. (29). Similar parameter for Larmor resonance is 

 ( ) 2
0 1 .I IW ω ω πω= =  (32) 

The forbidding factor is 

 ( ) ( ) ( )0 02 2 / .I I IA W Wω ω ω ω ω ω= = = =   (33) 

We see that it depends on equilibrium properties of the system. Of course results will be very different 
for large classical spins and for small quantum spins with the same gyromagnetic ratio. Direct 
calculation produces 
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 ( ) ( )
2

221
0

12 8 ( 1) .zI
I jk kjk

I

W c I I I
N

ωω ω π
ω

 
= = + − 

 
∑  (34) 

It is evident that ( )0 IW ω ω=  does not depend on spin value at all. Contrary that ( )0 2 IW ω ω=  has 

strong corresponding dependence, and "extra"-quantum case 1 2I =  has no dependence on initial 
state, while classic limit has strong corresponding dependence. 

5. Conclusion 

The analysis indicates that description of classical and quantum spin dynamics can be carried out in 
general way, where difference between these theories go into action at last steps in calculations of 
such values as forbidding factor or resonance form function for example. These exist strong 
indications, that dipole resonance form function for classical and quantum theories are very close as 
well, see for example [21]. 
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