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Temperature dependence of the conduction electron g-factor in silicon: 
theory and experiment 
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Temperature dependence of the conduction electron Lande g-factor in silicon has been investigated 
both theoretically and experimentally. Theoretical consideration is based on the renormalization of 
the electron energy in the magnetic field by the electron-phonon interaction in the second-order 
perturbation theory. Interaction with lattice vibrations decreases the conduction electron g-factor. 
The g-factor was measured in the electron spin resonance (ESR) experiments for n-Si samples. In 
the high temperature limit the g-factor linearly decreases with temperature in good agreement with 
the experimental data. 

PACS:  72.25.Rb, 71.38.-k, 76.30.Pk 

Keywords: g-factor, electron-phonon interaction, spin flip, renormalization, temperature dependence, 
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1. Introduction 

Since pioneer demonstration of the spin injection and detection in Si [1], silicon becomes a perspective 
material for spintronics due to weak spin-orbit interaction, large spin relaxation time and diffusion 
length in comparison with typical III-V semiconductors such as GaAs. One of the most important 
characteristics of conduction electrons in various systems with spin-orbit coupling is the spin 
relaxation rate. Spin relaxation in silicon mainly occurs through the Elliott [2] and Yafet [3] 
mechanisms, where spin flip processes are caused by electron-phonon interaction. Quantitative 
theoretical studies of the Elliott-Yafet spin relaxation in silicon [4] yields the spin relaxation rate 
proportional to a third power of temperature. This fact is in good agreement with the experimental 
data. The spin relaxation rate can be extracted from the line width of the conduction electron spin 
resonance (CESR). 

Another important characteristic of conduction electrons in magnetic field is their Lande g-factor, 
which is characterized by the position of the CESR line. First experimental investigations of the 
conduction electron g-factor were carried out by Wilson and Feher [5]. The measured value for “free” 
carriers was found to be 0001.099875.1 ±=g . In silicon each conduction valley has an axial 

symmetry, so the g-factor becomes a tensor with two, longitudinal ||g  and transverse ⊥g , principal 

values. The measured value g is isotropic due to cubic symmetry of the Brillouin zone and has the 
average form over all 6 conduction band valleys: 

 ⊥+= ggg
3

2

3

1
|| . (1) 

In opposite to the spin relaxation rate, which temperature dependence is usually measured in 
experiments, the g-factor is supposed independent of temperature in a wide temperature range. 
However, such an assumption, generally speaking, should be verified. In our previous work [6] we 
first measured the temperature dependence of the electron g-factor in n-type silicon using ESR 
technique. It was suggested that this effect can be explained by the phonon modulation of the spin-
orbit interaction in the system. So, in this work we discuss some theoretical approach to this problem 
and compare our calculations with experimental results. 
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2. The model 

Theoretical study of the g-factor temperature dependence is based on the renormalization of the 
electron energy in the external magnetic field by the electron-phonon interaction. Within the 
framework of a many-body picture the renormalization of the excitation energies by lattice vibrations 
is represented by [7] 

 ( ) ( ) ( ) ( )kkk ,Re0 εεε ∗+= , (2) 

where ( ) ( )k0ε  and ( )kε  are unperturbed and renormalized electron energies, respectively, and 

( )k,Re ε∗  is the proper self-energy real part, that can be presented in covalent semiconductors, such 

as silicon, using the Rayleigh-Schrödinger perturbation theory [8]: 
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ss

ss

sNWV


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where qkk±V  is the matrix element describing the electron momentum scattering from the state k  to 

the state qk ±  accompanied by absorption (upper sign) or emission (lower sign) of the phonon with 

the wave vector q and polarization λ , ( )qλω  and λqN  are the frequency and occupation number of 

the phonon, and kW  is the electron occupation probability for the state k . In what follows, we 

replace the phonon and electron occupation numbers by their equilibrium values describing the Bose-
Einstein and Fermi-Dirac statistics, respectively. 

If the spin-orbit interaction is taken into account, the electron states become the states with an 
effective generalized spin that differs from the standard spin moment. We will denote these states as 

effective spin-up   or spin-down   vectors. In the absence of magnetic field the spin-up and spin-

down states have the same energies (the Kramers degeneracy). In the external magnetic field H 
oriented along one of the conduction band valleys the electron energy has the additional Zeeman term 

Hg Biμσ , where Bμ  is the Bohr magneton, ig  is the g-tensor principal value, ||,i = ⊥  for longitudinal 

and transverse components, respectively, and 21±=σ  are effective spin-projections on the magnetic 

field, and the electron wave vector k transforms into ceAkK += , where A is the vector-potential 

of the magnetic field. Generally speaking, one has to consider the single-electron g-tensor as a 
function of the wave vector as well as the translatory-motion energy. Thereby, in the presence of the 
external magnetic field renormalization of the total electron energy has the form 
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where ( )0
ig  and ig  are k-dependent unperturbed and renormalized principal values of the g-tensor, 

respectively, HW σK  is the electron distribution function in the ,σK  state in the presence of the 

external magnetic field, ( )iV σσ ′±qKK  is the spin-dependent momentum scattering matrix element for the 

electron in the i-th valley. 

The renormalized term in the expression (4) can be expanded into the Taylor series using standard 
approaches: 

 ( ) ( )B ig Hμ εK K ,  
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and 

 ( ) ( )
( )( )Hg

d

dW
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H K
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K
KK
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εσ +≈  (5) 

for a case of a weak magnetic field. Thereby, one can obtain an explicit expression for the 
renormalized g-tensor principal values: 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2

0 0 0

2
0 01

2 0

0

0 0
1

1 1 2 2

1 2 2
.

i
s s

i i i i
s

i
s s

i
s

V W N s
g g g g s

s s

V N s dW d s
g s

s s

σ σ λ

λσ
λ

σ σ λ

λσ λ

σ σ σ σ
ε ε ω

ε
σ

ε ε ω

′+ +

′ =±

′+ +

′ =±

− + −
′= − − +

− + +

+ − +
′− +

− + +





K K q K q q

q

K K q q K q

q

K K K K q
K K q q

K q
K q

K K q q





 (6) 

As seen, the g-factor correction consists of two parts. The first part comes from the denominator of the 
self-energy, while the second one comes from the expansion of the electron distribution function into 
the Taylor series. Due to the weakness of the g-factor dispersion in semiconductors, it is possible to 
neglect the contribution of the term σσ =′  in the first sum. On the contrary, in the second sum we 

neglect the term σσ −=′  because of small intensity of spin-flip scatterings compared to spin-

preserving processes [2]. Finally, introducing the g-factor correction ( ) ( ) ( )( )KKK 0
iii ggg −=δ , one 

obtain 
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where ( )iV ± qKK
 and ( ) ( )ii VV ±± =

qKKqKK
 are spin-flip and spin-preserving scattering matrix elements, 

respectively. The first term in (7) describes the renormalization of the g-factor caused by the spin-flip 
processes in the second-order perturbation theory according to the Elliott-Yafet theory of the spin 
relaxation [3,4]. The second term appears in Eq. (7) from the second-order spin-preserving scattering 
in the presence of a weak magnetic field due to the difference in the electron occupation numbers for 
the spin-up and spin-down states (such a difference provides paramagnetic properties for some 
materials [9]). 

In the ESR experiments the g-factor value is extracted from the maximum of the resonance line. 
The average value of the absorbed photon energy Ω  can be found as the relationship: NEabs=Ω , 

where N  stands for the number of absorbed photons. The denominator of the last fraction coincides 
with the difference between electron occupation numbers for spin-down and spin-up states: 

  −=
K

KK

HH WWN , while the full absorbed energy can be computed as the multiplication of the 

photon energy on the occupation number difference: ( ) ( )  −=
K

KK
K HH

Biabs WWHgE μ . Using the 

second expression in (5), the difference HH WW  −
KK

 can be expanded into series. The final evaluation 

can be performed with replacing K by k [3]. Thus, the observable i-th principal value of the electron 
g-tensor, ( ) HTg Bi μΩ=  , can be calculated as 
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When obtaining Eq. (8) some approximations has been used. First, the dispersion of the single-
electron g-factor is strong in metals, where electrons are situated near the Fermi surface with a shape, 
which can be essentially non-spherical. In semiconductor, electrons populate the bottom of the 
conduction band, so one can neglect the dispersion of the single-electron g-factor in the expression (8). 
Thereby, the measured g-factor value can be substituted on the g-factor value of the conduction band 
edge: ( ) ( )0kii gTg ≈ , where 0k  is the position of the conduction band minima in the Brillouin zone. 

Besides, as seen from the Eq. (7), the g-factor renormalization becomes greater if the electron energies 
( )( )k0ε  and ( )( )qk ±0ε  (as well as the g-factors) have close values. Consequently, we can neglect the 

zero-order g-factor dispersion in the Eq. (7). Therefore, the measured value of the conduction electron 
g-factor is 
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where ( ) ( ) ( )0
00 kii gg = , ( )( ) ( )( )qq ii VV  =  and ( )( )qiV  are matrix elements for spin-preserving and spin-

flip scatterings from the conduction band minima 0k  to the state qk ±0 , respectively. In the case 

of intrinsic or nondegenerate n-type silicon we can neglect the electron occupation number in the 
expression (9). Therefore, the final expression for the g-tensor eigenvalue is 
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Considering the zero-temperature limit we should set 0=λqN  in Eq. (10). In this case Eq. (10) 

yields the zero-temperature renormalization of the g-factor by emitting and subsequent absorbing 
virtual phonon. Evidently, measured low-temperature conduction electron g-factor 9987.1≈g  by 

Wilson and Feher, includes this correction. Consequently, we will use the low-temperature 
experimental value as the zeroth approximation: 

 ( ) ( ) ( )
( )( )

( )( ) ( )( ) ( )( ) 9987.120 2

0
0

0
0

2

00 =
−−−
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Due to the small difference between ( )0ig  and ( )0
ig  one can replace ( )0

ig  by ( )0ig  in the Eq. (10), so 

that 
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where ( ) ( ) ( )0iii gTgTg −=δ  is the temperature-dependent correction to the g-tensor eigenvalue. Thus, 

the temperature dependence of the g-factor in our approach is formed by phonon-induced spin-flip 
processes between initial, intermediate and final electron states, where the final state completely 
coincides with the initial one. 
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 Yafet has shown that, for the spin flip processes in silicon, ( ) ( ) 2~ qqiV  in contrast to the spin 

preserving scattering matrix element that is proportional to q. As a result, in expression (12) we set 

 ( )( ) ( )qq λωρVqAV i
i 22 = , (13) 

where the factor ( )qλωρV2  is the normalized coefficient in the electron-phonon interaction 

definition [10], ρ  and V are the silicon density and the sample volume, respectively, iA  are some 

constants symbolically referred to as spin deformation potentials. Substituting (13) into (12), and 

counting the electron energy from the conduction-band bottom ( ) ( )0
0 kε , and then turning the 

summation over q into integration, one obtain the T-dependent correction ( )Tgiδ  in the following 

form: 
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As seen from the expression (14), the scattering with the short-wavelength phonons mainly 
contributes to the g-factor renormalization. Therefore, we further consider the intervalley scattering. In 
that case the phonon frequency is almost independent on the wave vector, and can be treated as a 
constant. Using spherical approximation for the electron energy, it is possible to obtain the following 
estimation: 
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where ( )0qλλ ωω =  is a mean frequency of the intervalley f-phonon, 026.0 mm ≈  is the average 

electron effective mass, and 0m  stands for the free electron mass. Thus, the temperature dependence 

of igδ  is caused by the temperature dependence of the phonon occupation numbers ( )λωN . 

Using Eq. (1), numerical values of the acoustic phonon frequencies [11], the spin-flip matrix 
elements [4], and experimentally observed low-temperature values of the g-tensor components [5] we 
calculate average (over all 6 valleys) temperature dependence of the conduction electron g-factor in 
silicon. The results of our calculations are presented in Fig. 1 by the solid line. It is seen that, the 
g-factor slightly decreases with temperature increasing, and its total variation is about 0.0004 for T 
ranging within 10-250 K. 

3. Comparison with experimental results 

We studied the electron g-factor in ESR spectra measurements. We have observed dependence of the 
g-factor of conduction electrons in silicon on temperature and found that in temperature range 
80-250 K they are alike for different donors and their concentrations. The measurements are 
performed on the spectrometer “Bruker EMX 10/12” using helium cryostat with a system of a 
temperature control (3.8-300 K) “ER 4112 HV”. We use natural silicon samples doped with lithium 
and phosphorus to make some concentration of electrons in the conduction band. Donor 
concentrations in both samples were very close to minimize difference in the spin flip process 
intensity. 

The experimental results are presented in Fig. 1 together with the theoretical curve. As 
temperature increases from zero to ~ 80 K, a monotonous rise of the g-factor value takes place. We 
suppose that in this temperature range electrons are still localized on the donor centres and have the 
discrete energy spectra. Each of these discrete states can be described by different g-factors, and 



A.A. Konakov, A.A. Ezhevskii, A.V. Soukhorukov, D.V. Guseinov, S.A. Popkov, V.A. Burdov 

Magnetic Resonance in Solids. Electronic Journal. Vol. 13, No 2, pp. 14-20 (2011) 19 

changing the electron distribution among these states with the temperature rising can lead to rising of 
the g-factor. Consideration of this effect in more details goes beyond the scope of the present paper. 

However at higher temperatures 
the donors become ionized and the 
electrons can propagate over the 
sample. In this temperature range 
one can see approximately linear 
decrease of the g-factor for both 
samples, which qualitatively agrees 
with prediction for conduction 
electrons. The linear approximation 
of the experimental results for a 
temperature range over 80 K has 
shown, that the absolute value of the 
experimentally observed coefficient 
of the g-factor linear T-dependence 
is about 6 14 10 K− −⋅  independently of 

the donor type. This is 
approximately two times greater 
than the one predicted theoretically. 
Thus, more accurate calculations are 
required. 

Also, CESR measurements yield different values of the g-factor for Si samples doped with 
different donors, especially at T greater than ~ 80 K. The theory developed in the present paper does 
not describe this effect. It is, however, clear that, the spin-flip scattering due to the impurity centres is 
similar to that takes place due to the lattice vibrations, and, therefore, can modify the g-factor as well. 
Correspondingly, the complete quantitative analysis have to include calculations of the spin-flip 
matrix element as a function of the donor type. However, this problem goes beyond the frame of our 
paper, and needs special study. 

4. Conclusion 

Generally speaking, the g-factor modification in silicon has a similar nature to the spin relaxation 
process. In this work we have shown, that the Elliott-Yafet mechanism of the spin-flip scattering leads 
to the conduction electron g-factor renormalization. The generalization of this result onto the other 
channels of the spin-flip process, such as impurity or nuclear spin scattering, can be considered as a 
fundamental problem of the solid-state spin physics, which has been waiting for its solving. 
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