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Expressions for the calculation of matrix elements of the Coulomb interaction of the electron with an 
infinite crystal lattice in ion crystals have been obtained. In the general case, matrix elements are 
calculated on the orbitals belonging to ions of different sites. Gaussian-type orbitals are used in the 
calculations. All expressions are absolutely and rather rapidly converging series in the space of the 
inverse lattice vectors. At present the value of this interaction being only one-center is estimated by 
the Madelung constant, in other words, by calculating the electrostatic potential in the lattice site, i.e., 
in a point. 

PACS: 61.50.Ah, 61.72.S 
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1. Introduction 

The method of secondary quantization with a partly nonorthogonal one-particle basis was developed 
in [1-4]. Its application to admixture centers [4], when the overlap integrals of ion orbitals are 
sufficiently small, allows one to build mathematically correct expressions for the perturbation-theory 
series within virtual and real charge transfer processes. To calculate physical characteristics of an 
admixture center ab initio, it is necessary to separate an U-region around the admixture ion where all 
interactions should be written exactly and the other part of the crystal, which is taken into account in 
the ion approximation. It is convenient to present the charge of nuclei Z  of ions in the U-region as 
Z q n m= + +  [2], where q  is the charge of the ion in the host crystal, n  is the number of electrons in 

ions in the considered configuration, m  is the deviation of the ion charge in the host crystal for the 
considered configuration. Such a partition allows one to rather simply group all interactions in the 
U-region, at least in ion crystals, with respect to their order of magnitude, e.g., when calculating the 
crystal field parameters or amplitudes of the transition of electrons between ions [2-4]. Note that the 
value of the ion charge – q  in the U-region is a definite number and not a fitting parameter. In this 

approach it is necessary to calculate two-center matrix elements (TME) and one-center matrix 
elements (OME) of the long-range (LR) Coulomb interaction of an electron with an infinite crystal 
lattice.  

At present the value of this interaction being only one-center is estimated by the Madelung 
constant, in other words, by calculating the electrostatic potential in the lattice site, i.e., in a point 
[5-8]. The exclusion is [9], where the energy of the Coulomb interaction of the s-electron with the 
infinite crystal lattice was calculated. 

The article below is arranged as follows. General expressions for the calculation of TME of the LR 
Coulomb interaction of the electron with the infinite crystal lattice are derived in the second section. 
Formulas necessary for the calculation of matrix elements on , , ,s p d f  orbitals of ions are given as 

well. On the basis of the expressions for TME of the LR Coulomb interaction, the expressions for 
OME of the LR Coulomb interaction are presented and particular cases are considered. 
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2. General part 

Let the radial part nlR  ion orbital ( )nlmψ r  where the electron is located has the form of the Gaussian 

basis expansion (GTO) 

 ( )2exp .l
nl i i

i

R a r rα= −  (1) 

Let the first ion be located at the site with the radius-vector 0 0, 0+ =R r Rj . The second ion is in the 

site with the radius-vector rb . The charge pq  is in the site with the radius-vector +R rn p . Let us 

denote 0 = −r r rb j , ( )= − −R R r rn j p , where Rn  is the vector of the n − th crystal unit cell, rj  and 

rp  are the vectors of the ions of the unit cell, ξ , ξ ′  are the quantum numbers of ion orbitals. 

The matrix element of the Coulomb interaction between the electron and the charge pq  calculated 

on the wave functions of the first and second ions has the form  

 ( ) ( ) ( ) ( )
( ) ( )ξ ξ ξ ξψ ψ ψ ψ′ ′  − − − = − − −  − + − − − 

r r r r r r r r
r R r r R r r

p p
j b b j

n p n j p

q q
. (2) 

We define the ( )1 2 3F n n n  functions as follows  

 ( ) ( ) ( )212 31 2
1 2 3 0

,

2 exp exp
nn n

p i k i k
i k

F n n n q a b x y z dxdydzπ α β−  = − − − − −   r r R r r . (3) 

For example, the matrix element calculated on the ( )rzp  functions has the form  

 ( ) ( ) ( ) ( )0 0

3
002 001

2
− − =  −  −

r r r
r R

p
z z

q
p p F z F . (4) 

Let us further present the ( )1 2 3F n n n  functions in a form convenient for calculations. To this end, we 

perform transformations used in [2]  

 ( )2 2

0

1 2
expdv v

π

∞
 = − − −  r R

r R
, (5) 

 
2

2
21

iku
v

u

α
=

−
,    

3

2

2

1

ikik

du
dv

v αα
 

= 
+ 

, (6) 

where ik i kα α α= + . After transformations (5) and (6), the integration over x, y, z in (3) is reduced to 

table integrals [10] and the following expression is obtained for the ( )1 2 3F n n n  functions 

 

( ) ( )
( )

( )
( )

( )

22 2221 3

1 2 3
, 0 010

2 2 2
0

11
!

! 2 !4 !

exp exp ,

ns
m n m ws s s sn ms s s s ws

p i k s smsi k m wsik s s s sik ss s

i k
ik

ik

u R c u
F n n n q a b du n c

w n m wm

u

α α

α βα
α

 
  − −−  

= ==

 
  − −    = −    − −   
  

  × − − −    

  ∏

R c r

 (7) 
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where [ ]/ 2sn  is the integer part of a number in brackets; 01 0 ,x x=  02 0 ,x y=  03 0x z=  denote the 

coordinates of the vector 0;r  0 /s k s ikc xβ α=  denote the components of the vector ;c  

1 2 3, ,x y zR R R R R R= = =  denote the coordinates of the vector R . After multiplication of three curly 

brackets in (7), the multipliers of the form  

 ( ) ( ) ( ) ( )2 221 3
1 2 3 exp α − − − − − R c

 nn n
x y z ikR c R c R c u , (8) 

where 2s s s sn n m w= − − , are presented in each term of the resulting sum. According to the above 

notation ( )= − −R R r rn j p . We introduce a vector = −r r rj p . Since the ion positions in the unit cell 

are rather arbitrary, we consider that the vector r  is defined in all points of the unit cell and let us 

introduce the ( )1 2 3, , ,D n n nr     function whose domain is the unit cell 

 ( ) ( ) ( ){ }3
2 2 2

1 2 3
1

, , , exp
n m ws s s

ns s s ik ns s s
sn

D n n n R x c R x c uα− −

=

 = − − − − − ∏
R

r    , (9) 

where 1 2 3, ,x x x y x z= = =  are the coordinates of the vector ;r  1 ,n nxR R=  2 ,n nyR R=  3n nzR R=  

denote the coordinates of the vector nR . The ( )1 2 3, , ,D n n nr     function is a periodic function of r  with 

the period of the crystal unit cell (see, e.g., [11]) and the same as in [11], when the Fourier coefficients 

( )1 2 3, , ,D n n ng     of the ( )1 2 3, , ,D n n nr     functions are found, integration over the unit cell can be 

reduced to the integration over the whole space. Thus 

 ( ) ( ) ( )1 2 3 1 2 3, , , , , , expD n n n D n n n i=   
g

r g gr      , (10) 

 ( ) ( ){ } ( )31 2 2 2
1 2 3

1
, , , exp expnn n

ik
c

D n n n x y z u i dxdydz i
v

α = − + −   g r gr gc    , (11) 

where cv  is the volume of the unit cell, g  is the vector of the inverse lattice, i  is the imaginary unit. 

By performing integration in (11), we obtain 

 

( ) ( )
( )

( )

3
2232

1 2 3 2
01

2

3 2

1 1 1
, , , !

2 ! 2 !

1
exp exp ,

4

s
s ss ss

s

n
n hn hn

s
s

hsc ik s s s ik

ik

ig
D n n n n

v h n h u

i
u u

π
α α

α

 
−  − 

==

 
 −    =       −     

 

  × − −        

∏g

g gc




   


  (12) 

where 1 ,xg g=  2 ,yg g=  3 zg g=  are the coordinates of the vector g . Let us further introduce the 

( )1 2 3jbF n n n  functions. To this end, we substitute n= −R R r  into expression (7) and perform 

summation over vectors nR  with the use of expressions (9)-(12), then we substitute j p= −r r r  into 

the obtained expression and perform summation over vectors pr  of the whole unit cell. These 

calculations are bulky but rather simple and as a result, we obtain  
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( )

( ) ( ) ( ) ( ) [ ]

3 5
312 2

2
1 2 3 1 2 3 0

, 0

2

1 2 3 2

1 1
! ! ! exp

, , , exp exp exp ,
4

i k
jb i k

i kc ik ik

jb x jb y jb z p j p
pik

b
F n n n n n n a b du

v u

f n g f n g f n g q i i
u

απ
α α

α

     = − −     
    

    × − − −       

 

 
g

r

g g r r gc

 (13) 

where  

 ( ) ( )
( )

( )
( )

2
2222 22

0 0 0

1 11
,

! 2 ! 2 2 !4 !

n n m wm hn m w hn m
ikws

jb s sm
m w hik sik

u uig
f n g c

w h n m w h gm

α
αα

− −   
− −   −   

= = =

−  − −
=     − − −   
   . (14) 

Then we obtain the explicit expressions of the ( ),jb sf n g  functions for the values 0,1, 2, 3, 4n =  

 

( ) ( ) ( )

( ) ( )

20

3 4 2
2

1 1
, 0, 1, 1, , 2, ,

2 2! 4

1 1 1 1 1
3, , 4, .

3! 4 4! 8 32

k s s
s jb s jb s s jb s s

ik ik ik

jb s s s jb s s s
ik ik ik

x g
Z i f g f g Z f g Z

f g Z Z f g Z Z

β
α α α

α α α

= − = = = +

= + = + +

 (15) 

It is seen that the ( ),jb sf n g  functions do not depend on the parameter u . Below we will call the sum 

over the index p  in parentheses in (13) as a structural factor ( )jG g . It is presented as follows 

 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2

1 2
1 2 1 2

1 2

exp ,

cos sin , sin cos ,

cos , sin .

j j j p j p
p

j j j j j j

p p p p
p p

G G iG q i

G F F G F F

F q F q

 = + = −  

= + = −

= = 

g g g g r r

g gr g gr g g gr g gr g

g gr g gr

 (16) 

By substituting (16) in (13) we obtain for the ( )1 2 3jbF n n n  functions  

 

( )

( ) ( ) ( ) ( ) ( )

3 5
312 2

2
1 2 3 1 2 3 0

. 0

2

1 2 3 2

1 1
! ! ! exp

, , , exp exp .
4

i k
jb i k

i kc ik ik

jb x jb y jb z j
ik

b
F n n n n n n a b du

v u

f n g f n g f n g G i
u

απ
α α

α

     = − −     
    

 
× − −    

 

 


g

r

g g gc

 (17) 

By performing integration over the parameter u  in (17) we obtain the final expression for the 

( )1 2 3jbF n n n  functions  

 

( )

( ) ( ) ( ) ( ) ( )

3 3
2 2

2
1 2 3 1 2 3 0

,

2

1 2 3 2

2 1
! ! ! exp

, , , exp exp .
4

i k
jb i k

i kc ik ik

j
jb x jb y jb z

ik

b
F n n n n n n a b

v

G
f n g f n g f n g i

απ
α α

α

   
= − −   

   

 
× − −    

 




g

r

gg gc
g

 (18) 

Now we introduce the operator LRH  of the Coulomb interaction between the electron and the infinite 

crystal lattice  
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 ( ) ( ) ( ) ( ) ( )
,

p
j LR b j b

n p
n p

q
Hξ ξ ξ ξψ ψ ψ ψ′ ′− − = − − −

− +
r r r r r r r r

r R r
.  

Thus, the matrix elements of the operator LRH  calculated on the orbitals of the lattice ions are 

expressed in terms of the ( )1 2 3jbF n n n  functions. For example, we obtain for the ( )zp r  and 

( )0zp −r r  orbitals  

 ( ) ( ) ( ) ( )0 0

3
002 001

2z LR z jb jbp H p F z F − = − r r r . (19) 

One-center matrix elements 

One-center matrix elements can be expressed in terms of the ( )1 2 3jF n n n  functions. To find these 

functions, it is sufficient to take 0 0=r  in (18) and we obtain  

( ) ( ) ( ) ( ) ( )
3 3

22 2

1 2 3 1 2 3 1 2 3 2
,

2 1
! ! ! , , , exp

4
j

j i k x y z
i kc ik ik

G
F n n n n n n a b f n g f n g f n g

v

π
α α

  
= − −  

   
 

g

g g
g

. (20) 

The ( ), sf n g  functions are obtained from expressions (14) for the ( ),jb sf n g  functions, if only the 

terms with the index 0=w  are kept there. To obtain the ( ), sf n g  functions for the values 

0,1,2,3,4n = , it is necessary to assume 0 0sx =  in the expression sZ  in formulas (15). The ( ), sf n g  

functions for the values 5,6n =  are given below 

 

( )

( )

5 3
2

6 4 2
2 3

1 1 1
, 5, ,

2 5! 24 32

1 1 1 1
6, .

6! 96 64 384

s
s s s s s

ik ik ik

s s s s
ik ik ik

g
z i f g z z z

f g z z z

α α α

α α α

= − = + +

= + + +

 (21) 

Thus, all matrix elements for the fdps ,,,  orbitals of ions are determined. 

Particular cases 

The matrix element of the operator LRH  on the ( )zp r  wave functions and at 

2 0 0( ) 0, ( ,0,0)F x= =g r  according to (18) and (19) is expressed in terms of the function  

 

( )

( )

5
222

2
01/2

,

10
22 2

2

, ,

1 1 1
002 exp

22

, ,
cos 2

exp

x y z

i k z
jb i k

i k n n nik ik ikc

x y zk
j x j y j z

ik yx z

n
F a b x

cv

F n n nx
x n y n z n

nn n

a b c

α β π
α α απ

βπ
α

π
α

      = − −      
       

    × − + +                 + +    
     

× −

 

22 2

,yx z

ik

nn n

a b c

        + +             

  (22)   
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where ( )1 1( ) , ,x y zF F n n n≡g , ( )2 / , 2 / , 2 /x y zn a n b n cπ π π=g , , ,a b c  are the lattice constants. The 

quantities 0, , ,j j jx y z x  in the argument of the cosine are given in relative units. 

The one-center diagonal matrix elements calculated with the help of (20) are the energy jE  of the 

Coulomb interaction between the orbital electron located in the site jr  and the crystal lattice, including 

the interaction with the charge jq  located in the same site. At the same time, it is natural to refer the 

interaction between this electron and its nucleus to the Hartree-Fock energy [2-4]. In this case it is 
necessary to exclude the interaction between the considered electron and the charge jq  from the 

energy jE , i.e., to introduce the quantity ( )jE ψ  defined as follows (in [9] it is denoted as j
orE ) 

 ( ) 0j j jE E q Eψ = − , (23) 

where 0E  is the interaction between the considered electron and the unit positive charge at the same 

site, ψ  is the orbital. The energy 0E  can be expressed in terms of the ( )0 1 2 3F n n n  functions, which are 

determined by formula (3), if 0 0=r , 0,=R  1pq = . If it is taken into account that ( )0 1 2 3 0F n n n ≠  

only when 1 2 3, ,n n n  are even numbers, then, according to (7), we obtain  

 ( ) ( )

1

1 2 3
0 1 2 3

,1 2 3

! ! ! ! 1

! ! ! 2 2 1 !!

m

i km
i k ik

n n n m
F n n n a a

m m m m α

+
 

= −  +  
 , (24) 

where 1 1 2 2 3 32 , 2 , 2n m n m n m= = = , 1 2 3m m m m= + + . 

We write below the expressions ( )0 1 2 3F n n n , which are used further  

 

( ) ( ) ( ) ( )

( ) ( ) ( )

2

0 0 0 0
, ,

3 3

0 0 0
, ,

1 1 1
000 , 200 020 002 ,

3

2 1 2 1
220 , 400 040 .

15 5

i k i k
i k i kik ik

i k i k
i k i kik ik

F a a F F F a a

F a a F F a a

α α

α α

   
= − = = = −   

   

   
= − = = −   

   

 

 

 (25) 

According to (20) and (25), the energy of the interaction between the arbitrary s-orbital ( )jE s  and the 

lattice determined by (23) can be written as  

 ( ) ( )
1 3 1

22 2 2

2
,

1 4
exp 2

4 4
j ik

j i k j
i k ik c ik

G
E s a a q

v

απ π
α α π

      = − − +           
 

g

g g
g

. (26) 

Let us denote the expression in square brackets in (26) as ( ) ( )1
jE s  and assume 2ikα α=  then 

 ( ) ( ) ( )
1

2
21

2

4 2
exp 2

8
j

j j
c

G
E s q

v

π α
α π

   = − − +   
  


g

g g
g

. (27) 

The expression (27) is the energy ( )jE s  for the s-orbital composed of an exponent with the 

index α  [9]. The j
orα  value is determined in [9] analogous to the Madelung constant .Mα  The 

constant Na
orα  for the NaCl crystal was calculated in [9] for different α  values with the accuracy of up 

to 25 digits after the decimal point. For example,  
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 0.1α = ,  1.7429785198333593881232629Na
orα = ,  

 1α = ,  1.7475645946331821906362119Na
orα = ,  

 10α =  and 100α = ,  1.7475645946331821906362120Na
orα = .  

The Madelung constant Mα  for NaCl calculated by direct summing in [12] with the accuracy of up to 

25 digits after the decimal point is  

 1.7475645946331821906362120Mα = .  

It is seen that one and the same number (with given accuracy) is in the expression (26) for the arbitrary 
s-orbital in square brackets if 4ikα ≥  ( 2α ≥ ) by the order of magnitude. In the case of NaCl, for such 

ikα  the energy ( ) ( )1 0.32851544NaE s =  a.u. given with the accuracy of up to 8 digits after the decimal 

point coincides with the Madelung energy. The explanation of this fact is obvious. According to the 
Gauss theorem, if a spherically symmetric charge distribution does not overlap with a point charge, 
this charge distribution can be considered as the point charge as well. 

Below we consider p-orbitals. According to (20), (23) and (25), the energy of the interaction 

between the xp -orbital ( )j xE p  with the crystal lattice can be written as  

 ( ) ( )
1 5 1

2 22 2 2

2
,

3 1 4 4
1 exp

8 2 4 3
jx ik

j x i k j
i k ik c ik ik

Gg
E p a a q

v

απ π
α α α π

        = − − +              
 

g

g g
g

. (28) 

The expression in square brackets in (28) is denoted as ( ) ( )1
j xE p  and we assume 2ikα α=  then 

 ( ) ( ) ( )
1

2 2
21

2

4 4 2
1 exp

4 8 3
jx

j x j
c

Gg
E p q

v

π α
α α π

     = − − +     
   


g

g g
g

. (29) 

The expression (29) is the energy ( )j xE p  for the xp -orbital composed of an exponent with the 

index α . Structural factors ( )jG g  for the NaCl and KMgF3 crystals are given in [9]. The calculations 

according to the formula (29) for the Na ion in the case of the NaCl crystal for the values 1, 2, 5α =  

give the value ( ) ( )1 0.32851544Na xE p =  a.u., i.e., the Madelung energy. The calculations according to 

the formula (29) for the Mg ion in the case of the KMgF3 crystal for the values 1, 2, 5α =  give the 

value ( ) ( )1 0.82429794Mg xE p =  a.u., i.e., the Madelung energy [9]. The explanation of this fact is also 

obvious. The crystals are cubic and the quadrupole interaction for the p  orbitals is zero. To calculate 

the energies of the ,y zp p -orbitals, it is necessary to substitute the explicit variable xg  in (28) for the 

variables ,y zg g , respectively. 

For example, the interaction between the crystal lattice and the ( )xyd r  and ( )2 2x y
d

−
r  orbitals is 

determined following ( )1 2 3jF n n n  functions: 

 ( ) ( )
3 7

4 2 22 2

2 2
,

3 1 1
400 exp

2 2 424
jx x

j i k
i kc ik ik ikik

Gg g
F a a

v

π
α α αα

    
= − − + −    

    
 

g

g g
g

. (30) 
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The ( )040jF  function is obtained by substituting the explicit variable xg  in (30) for the variable yg .  

 ( ) ( )
3 7

22 22 2

2
,

1
220 1 1 exp

2 2 2 4
y jx

j i k
i kc ik ik ik ik

g Gg
F a a

v

π
α α α α

     
= − − − −            

 
g

g g
g

. (31) 

In conclusion of this section, we present the expression for the ( )1 2 3jF n n n  functions in which 

numerical integration is used. It can be useful when the ikα  values are rather large  

 

( )

( ) ( ) ( ) ( ) ( )

3 5
312 2

1 2 3 1 2 3
, 0

23

1 2 3
1

1 1
! ! !

, exp ,0 ,0 ,0 ,
24

j p i k
p i kc ik

s
s s s js ps

gs iks

F n n n n n n q a b du
v u

g
f n g ig x x f n f n f n

u

π
α

α=

   = −    
  

      × − + − −       

  

∏

  (32) 

where 1 2 3, ,j j j j j jx x x y x z= = =  are the coordinates of the vector jr  and analogously psx  are the 

coordinates of the vector pr . The second term in the formula (32) eliminates the divergence at 0=g . 

If the expression (20) is called the “exact value”, then the formula (32) gives the values which in the 
most cases coincide with this “exact value” to 8-10 digits after the decimal point already in the 
calculations with the accuracy set in the programs by default.  

3. Discussion 

The above TME and OME of the LR Coulomb interaction between the electron and the infinite crystal 
lattice arise naturally within the approach of [1-4]. The comments about TME follow. For ion crystals 
or admixture centers in ion crystals, TME is small when the region of the overlap of anion and cation 
orbitals coincides with the region of the change of the electrostatic potential sign. However, if the 

average values r  of the orbitals of ions considerably differ, the value of these matrix elements may 

be noticeable and they have to be taken into account in the ab initio calculations. In our opinion, the 
two-center matrix elements should be also estimated in the calculation of the amplitudes of the charge 
transfer over the anion or cation sublattice, since the overlap region fits the region of the constant 
electrostatic potential sign. For example, the amplitudes of the transition over the oxygen sublattice of 
La2CuO4 were calculated in [13]. The value of these amplitudes is within 0.4 0.6 eV÷  but only the 

short-range interaction in taken into account. At the same time, for α′ -NaV2O5 according to (19) and 
(22) the value of the corrections from the long-range Coulomb interaction over the 
σ -bond 0.105 eV,≈ −  and that over the π -bond 0.174 eV.≈  Thus, in the general case the long-range 

Coulomb interaction should be estimated when such amplitudes are calculated.  

Conclusions 

In the general case, the U-region around the admixture ion or the unit cell determined above is several 
coordination spheres, where the short-range interactions can be written exactly. Formulas obtained in 
this work allow one to rather exactly take into account the long-range Coulomb interaction as well. 
Hence, we obtained a method for the ab initio calculation of physical quantities in the U-region, at 
least at rather small overlap integrals needing no introduction of any parameters.  
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