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Analytical expressions for the Coulomb interaction between an s-orbital electron and the surroundings, infinite ionic 
crystal lattice are derived. The s-orbital wave functions are presented in the form of a Gaussian expansion. As a test, 
Madelung constants and interaction energy for NaCl, KMgF3, CaF2 are calculated using a single Gaussian exponent. 
The calculated values are coincided with known literature data with a high degree of accuracy. 
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O.A. Anikeenok  

1. Introduction 
The calculation of energy of Coulomb interaction of orbital with infinite crystal lattice is one of the most important 
problems in the ion crystals theory. The value of this interaction is estimated by the electrostatic potential 
calculation at the lattice site [1-3]. In this paper, the expressions for the calculations of the interaction energy of the 
s-orbital electron with infinite crystal lattice are derived. The s-orbital is taken in the Gaussian expansion form. The 
expressions are absolutely convergent series, which do not require additional parameter for convergence of series 
as in [1] and which do not contain the sum taken over direct lattice. This series can be calculated with pinpoint 
accuracy. One exponent orbital is used for test calculations of NaCl, KMgF3 and CaF2 crystals. 

2. General part 

Let the ion is situated at the origin of coordinate system and the radial part of its s-orbital is described by the Gaussian 
Type Orbital (GTO) function. Then an s- electron wave function is 

 ( 21 exp
4ns i iaψ
π

= ∑ )rα− ,  (1) 

where n is the main quantum number, s is the angular-momentum quantum number.  

The position of the charge  is determined by the vector q ( ), ,x y zR R R=R . The Coulomb interaction of such s-

electron with the charge  may be written [4]  q
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where ik i kα α α= + . 

The Coulomb interaction of the ion s-electron at the site  with the crystal lattice is the sum of functions (2). Then 

the electron - lattice interaction, including the ion of the site 
jr

jr , is energy jE . It may be written as follows 
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where  is the radius vector of unit cell, mR jr  is the radius vector of ion unit cell,  is the charge of ion with the 

radius vector . According to (2) an interaction energy  between the s-electron at the site 
pq

pr 0E jr  and the single unit 

positive charge at the same site jr  (R = 0) may be written as 

 0
1 1
2 i k

ik
E a a

α
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

∑ . 

The interaction energy j
orE  of s-orbital and crystal lattice is 

 , (4) 0
j

or j jE E q E= −

where jq  is the charge of the site jr  ion.  
 The expressions (3) and (4) are the functions of the lattice variables. Using transformation [5], the expression (4) 
may be displayed in the term of reciprocal lattice variable  
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where  is the vector of reciprocal lattice,  is the volume of  unit cell. g cv

 Then the interaction energy jE  may be written as follows 
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 ( ) ( ) ( ) ( ) ( )1cos sinj j jG F= +g gr g gr 2F g , (7) 

 ( ) ( ) ( ) ( )1 2cos , sin .p p p p
p p

F q F q= =∑ ∑g gr g gr  (8) 

The function (7) is named as a structure factor of the crystal.  

3. Calculation 

Let us take one exponent orbital 

 ( )
1

3 42
1

1 exp , 2 .
4s a r a αψ α
π π

⎛ ⎞
= − = ⎜ ⎟⎜ ⎟

⎝ ⎠

8   (9) 

Hereinafter all quantities are given in atomic units (au). According to equations (6) and (9)  
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Let us examine NaCl crystal. The unit cell is defined as  

 Na:        Cl:  ( ) (1 30,0,0 , 0.5 ,0.5 ,0.5 .a a b= =r r ) ( ) ( )2 40.5 ,0.5 ,0 , 0,0,0.5 .a a b= =r r  (12) 

where 2b a= ,   Ǻ or . 5.63b = 10.63916232186962b =

The energy jE  for NaCl according to (10) is written as follows 
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where  is the structure factor, b  is the absolute value of the unite cell vector along the axis .The structure 

factor  for NaCl is defined as  
( )NaG n

Na NG G≡

z

( )a n

 ( ) ( ) ( )1 1 1 1x y z x yn n n n n n
NaG z+ + += − − − − + −  . 

The value Na
orα  is defined by formula  

 ( )02
Na
or Na Na

b E q Eα = −   (14) 

Below we use the calculation accuracy up to 25 decimal places. According to equation (14) one can obtain  

0.01α =

0.1

, ; 0,8488752444376062993366228Na
orα =

α =

1

,  ;  1.7429785198333593881232629Na
orα =

α =

10

,      ;  1.7475645946331821906362119Na
orα =

α =

100

,    ; 1.7475645946331821906362120Na
orα =

α = ,  . 1.7475645946331821906362120Na
orα =

Another test is the lattice constant variation. Consider 0.1α = . Let b′  is a new lattice constant and  is the lattice 
constant we used before. So, we are obtained   

b

3b b′ =

6b b′ =

, ;  

, .  

1.7475645946331821906361765 Na
orα =

1.7475645946331821906362120Na
orα =
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The Madelung constant Mα  for NaCl calculated by direct summation up to 25 decimal places was presented in 
work [6]  
 1.7475645946331821906362120Mα =  (15)  

The explanation of the coincidence of (15) with our calculations is evident. According to the Gauss theorem if the 
spherically symmetrical distribution of charge does not overlap with the point charge then this distribution for this point 
charge looks like the point charge. 

Let us examine KMgF3 and CaF2 crystals. The energy jE  for KMgF3 and CaF2 according to (10) is written as 
follows (for 1α = ) 
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The structure factors for KMgF3 are defined as 

  (17) ( ) ( ) ( ) ( )2 1 1 1 1 1x y z x y x z y zn n n n n n n n n
KG + + + + += − − − − − − − +
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 ( ) ( ) ( ) ( )2 1 1 1 1 1z x z y z x yn n n n n n
FG n+ += − − − − − − + − + . (19) 

For the crystal KMgF3 3.973a =  Ǻ or 7.507884885397513a = . For simplicity we use below the accuracy of 
calculated values up to 8 decimal places. Then 

                  2.69360482,K
orα = 0.35877013,K

orE = 6.18873401,Mg
orα = 0.82429794,Mg

orE =

      3.22795440,F
orα = − 0.42994191.F

orE = −

The Madelung constants α  for KMgF3 according to [7] are 
    6.189,Mgα = 3.228.Fα = −  

The structure factors for CaF2 are defined as 

 ( ) ( ) ( ) ( ) ( ) ( )22 1 1 1 1 1 1 1 1 1 1 1
x y z

x y x z x y z
n n n

n n n n n n n
CaG

+ +
+ +⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡= + − + − − − + − + − + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎦ ,  (20) 

 ( ) ( ) ( ) ( ) 21 1 1 1 1 1 1 1
x y z

x y z
n n n

n n n
FG

+ +⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − + − + − − −⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎢ ⎥⎣ ⎦
. (21) 

For CaF2   Ǻ or , then 5.462a = 10.321688206403527a =

            7.56585221,Ca
orα = 0.73300530,Ca

orE = 4.07072302,F
orα = − 0.39438539.F

orE = −

The Madelung constant Mα  is defined in handbook [8] and for CaF2 Mα  = 2.51939. Using  and  we can 
obtain the same result for  

Ca
orE F

orE

Mα  in the framework of proposed here approach.  

So, we can conclude that our calculated values coincide with known values adduced in references. Equation (6) is 
absolutely convergent series, which continuous in iα . Therefore all the calculations are mathematically correct. 

Conclusions  
The expressions for the calculations of the interaction energy of the s-orbital electron with infinite crystal lattice 
are derived. The equations can be used for the Madelung energy calculations in case of sufficiently localized 
orbitals. The Madelung energy for the NaCl, KMgF3 and CaF2 crustals are calculated. 
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