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Lorentzian form for the imaginary part of the dynamic spin susceptibility: 
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We present some new results based on the relaxation function theory for a doped two-dimensional 
Heisenberg antiferromagnetic system with damping of paramagnon-like excitations. The Lorentzian 
form for the imaginary part of the dynamic spin susceptibility gives a reasonable agreement with 
neutron scattering and plane copper nuclear spin-lattice relaxation rate 63(1/T1) data in right up to 
optimally doped La2-xSrxCuO4. 
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1. Introduction 

Plane copper oxide high-temperature superconductors (high- ) are the doped S = 1/2 two-
dimensional Heisenberg antiferromagnetic (2DHAF) systems. In the carrier free regime, the 
elementary excitations are spin waves [1-3], magnons in the quasiparticle language. Observations by 
neutron scattering (NS) of the 

cT

Tω /  scaling for the averaged over the Brillouin zone the imaginary 

part of the dynamic spin susceptibility, 2)d( ) ( ( 0) (T T T fχ ω χ ω χ ω ω′′ ′′ ′′ )T, = , ≈ , → /∫
cT

,q q , in the 
underdoped high-  compounds [2] above  is referred to a nearby quantum phase transition [1]. 
Nuclear Magnetic/Quadrupole Resonance (NMR/NQR) studies [4] revealed the extension of the 
universal behavior of 

cT

( T )χ ω′′ ,  down to the MHz frequency range. In this paper we present some new 
results based on the relaxation function theory with damping of the paramagnon-like excitations [5-7] 
in connection with plane copper nuclear spin-lattice relaxation rate as obtained by NQR and imaginary 
part of the dynamic spin susceptibility ( )χ ω′′ ,k  as obtained by NS experiments. 

2. Basic relations 

We employ the -t J  Hamiltonian [8] known as the minimal model for high-  cuprates:  cT

 0 0 1(
4t J ij i j i j i j

i j i j

H t X X J nσ σ

σ
−

, , >

= + −∑ ∑ S S )n , (1) 

written in terms of the Hubbard operators 0
iX σ  that create an electron with spin σ  at site  and  are 

spin-1/2 operators. Here, the hopping integral 
i iS

ijt t=  between the nearest neighbors (NN) describes the 

motion of electrons causing a change in their spins and 0 12J = .  eV is the NN AF coupling constant. 
The spin and density operators are defined as follows: 

 0.5 ( )z
i i i i i iS X S X n Xσ σσ σσ σσ

σ σ
σ σ σ= , = , = , = −∑ ∑ , (2) 

with the standard normalization . 00 1i i iX X X++ −−+ + =
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The static spin susceptibility as derived within 
the t - J  model [9] is given by,  

 14( )
( )

c
Jg g

χ
γ− +

| |
=

+ k

k ,  (3) 

Table 1. The calculated in the T→ 0 limit 
antiferromagnetic spin-spin correlation 
function between the nearest neighbours 
c1, the parameter g_, and the spin 
stiffness constant Sρ . 

Doping c1 g_ 
and has the same structure as in the isotropic spin-
wave theory [10] at all doping levels. The NN AF 
spin-spin correlation function is given by 

1 (1 / 4) z z
i ic S ρρ += ∑ S , the index ρ  runs over NN, 

and (1 2)(cos cos )x yk kγ = / +k . The parameter g+  

is related to AF correlation length ξ  via the 

expression 1 (2 1) ( _ /g )ex / )B S Bg J k T k Tξ += / − ≈ p(2πρ S, where ρ  is spin stiffness. The values 

of the parameters of the theory [9]: c1, g_, and Sρ  are given in Table 1. 

The relaxation shape function is given by [11] 

 
2 2
1 2

2 2 2 2 2 2 2
1 2 1

( )
[ ( )] ( )

F τ πω
ωτ ω ω

Δ Δ /
, =

− Δ − Δ + − Δ
k k k

k k k k

k ,  (4) 

where 2
22 ( )τ π= / Δk k , and  and  are related to the frequency moments  2

1Δ k
2
2Δ k

 ( )n nF dω ω ω
∞

−∞
= ,∫k k ω , (5) 

as 2 2
1 ωΔ =k k , 2 4 2

2 ( ) 2ω ω ωΔ = / −k k k k , the expression for the second moment is given by  

 ( )2
1 1[ ] 8 4 1z z

effi S S Jc t Tω χ ⎛ ⎞
⎜ ⎟− ⎝ ⎠

γ χ= , / = − − − /k k k k k ,k  (6)  

where , 1
hT p fγ= ∑ k kk

(1 ) 2p δ= + / ,  and 1[exp( ) 1]h
kf E k Tμ B

−= − + / +k  is the Fermi function of 

holes, where the number of extra holes, δ , due to doping, per one plane Cu 2+ , can be identified with 
the Sr content x  in La 2 x− Sr x CuO . The excitation spectrum of holes is given by, 4 4 effE t γ=k ,k  where 

the hoppings, , are affected by electronic and AF spin-spin correlations , resulting in effective 
values [5,8], for which we set 

t 1c
0J 2efft δ= / . , in order to match the insulator-metal transition. The 

chemical potential μ  is related to δ  by hp fδ = ∑ kk
( )F. Note that ω,k  is real, even in both k  and 

ω , and normalized to unity ∫ . The detailed expression for (d Fω ω
∞

−∞
k ), 1= 4ωk  is given in [5].  

We take the Lorentzian form for the imaginary part of the dynamic spin susceptibility,  

 ( ) 2 2 2 2[ ] [ ]L sw sw

χ ω χ ωχ ω
ω ω ω ω

Γ Γ
, = +

− + Γ + + Γ
k k k k

k k k

k ,
k

 (7) 

for  around the AF wave vector k ( )π π, . The spin-wavelike dispersion, renormalized by interactions, 
is given by the relaxation function [11], given by Eq. (4), 

 
0

2 ( )sw F dω ω ω
∞

= ,∫k k ω , (8) 

where the integration over ω  in Eq. (8) has been performed analytically and exactly [7].  

2 /S Jπρ 0ξ  
δ =0 
δ =0.04 
δ =0.15

-0.1152 
-0.1055 
-0.0617

4.1448 
3.913 
2.947 

0.38 
0.3 
0.13 

– 
1/(2δ ) 
1/δ   
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The damping of paramagnon-like excitations Γk  is given by 2 2( )swω ωΓ = −k k k .  

The plane copper nuclear spin-lattice relaxation rate is given by  

 ( )63 63 2
1

10

21 ( )
eff

B
L

k TT F
ξ

0( )χ ω
ω | |> /

/ = ∑
k

k k, , (9) 

where 0ω  = 2π × 34 MHz ( ) is the measuring NQR frequency. The hyperfine formfactor for 

plane 63Cu sites is given by,  

where Aab = 1.7⋅10-7 eV and 

T J,
63 F k

(1B

( )22( ) ,4abA Bγ= + k

74 ) 3 8 10δ −= + ⋅ . ⋅

eff

 eV 
are the Cu on-site and transferred hyperfine couplings, 
respectively [12]. The effective correlation length ξ  

is given by, 1 1
0

1
effξ ξ ξ− −= + −  [5,13]. Thus from now on 

we replace ξ  by effξ  and 0ξ  values are presented in 

the Table 1. 
The spin diffusive contribution (from small wave 

vectors 1 effξ< /k ) can be calculated from general 

physical grounds, namely, the linear response theory, 
hydrodynamics, and fluctuation-dissipation theorem 
[5-7,11,14],  

 
63 2

63
1

(0) ( 0)(1 ) B
Diff

F k TT
D
χ

π
=

/ = Λ
k , (10) 

where  =  and 

 is the spin diffusion constant.  

Λ

(

2 2 4
0[1 (4 )]ln[1 ( )]effDπ ω/ + /

10)]F −,

ξ
2

0
lim[
q

D qπ
→

= q

3. Results 

Figure 1 shows the averaged over the Brillouin zone 
and normalized imaginary part of dynamic spin 

Figure 1. The averaged over 
the Brillouin zone the imaginary 
part of dynamic spin susceptibility 

 versus 2( ) ( )dL Lχ ω χ ω′′ ′′= ,∫ q q
Tω / . Symbols: NS data for 

La1.96Sr0.04CuO4 at various ω  
values from Ref. [13], the lines 
show the calculated ( )Lχ ω′′ . 

Figure 2. Temperature and doping dependence 
of the plane copper nuclear spin-
lattice relaxation rate 63(1/T1) = 2W. 
Experimental data for La2-xSrxCuO4

from Ref. [4]. Solid lines show the 
results of the calculations with 
Lorentzian form of the susceptibility 
and taking into account the damping 
of the paramagnon-like excitations 
using Eq. (7). The dashed lines show 
the results of the calculations without 
damping of the paramagnon-like 
excitations, after Refs. [5,6], i.e., 
using Eq. (11). 
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susceptibility ( )Tχ ω′′ ,  versus Tω / . It suggests Tω /  scaling for underdoped high-  layered 
cuprates with a deviations at small 

cT
ω  in qualitative agreement with NS data [1,13].  

Figure 2 shows the calculated with Eqs. (7) and (9) plane copper nuclear spin-lattice relaxation 
rate 63(1/T1) (solid lines) without any adjustable parameters. The dashed lines show the calculated 
63(1/T1) without damping of the paramagnon-like excitations [5], where ( )F ω,k  is related to the 
imaginary part of the dynamic spin susceptibility ( )χ ω′′ ,k  as [5,11],  

 ( ) ( )Fχ ω ωχ ω′′ , = ,kk k  .  (11)  

It is worth to mention that the temperature dependence of 63(1/T1) in both theories is governed by 
the temperature dependence of the correlation length and by the factor kBT in agreement with [12]. At 
low T, where eff constξ ≈ , the plane copper 63(1/T1) ∝ T, as it should. At high T, the correlation length 

shows weak doping dependence and 63(1/T1) of doped samples behaves similarly to that of La2CuO4. 

4. Summary 

In summary, we developed further a relaxation function theory [5-7] for dynamic spin properties and 
approved the Lorentzian form for the imaginary part of the dynamic spin susceptibility for layered 
copper high-  in the normal state. The cT Tω /  scaling and spin-lattice relaxation at plane copper sites 
may be explained within the damped spin-wave-like theory, possessing a reasonable agreement with 
the observations by means of neutron scattering and magnetic resonance in high-  copper oxides.  cT
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