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Electron states near the surface of small metal particle caused by an image charge (image-potential states) have been 

investigated. The wave functions were calculated and the energy spectrum of these states was found depending on 

particle size. To estimate the influence of static magnetic field on the image-potential states the model problem, in 

which electron is localized on a surface of a sphere in uniform magnetic field was solved. In this case the field 

dependence of the energy levels represents a complex level crossing structure. 
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Numerous physical effects based on specific states of ions and electrons at a surface of conductor have been the subject 

of large number of theoretical and experimental works and find expanding practical applications. One of the effects is 

an existence of image-potential states (IP states) which are the electron states localized at a metal surface in the field of 

image charge [1]. In a case of massive samples an electron bound to its own image does not penetrate the metal surface 

because of peculiarities of energy-band structure of the metal. IP states were widely investigated by low-energy electron 

diffraction (LEED), inverse photoemission (IPES) [2] and scanning tunneling spectroscopy (STS) [3]. In work [4] the 

transient processes signals have been observed after action of short super high frequency pulse on a metal surface while 

static magnetic field was perpendicular to the surface. The origin and the properties of observed signals have been 

explained [5] in terms of combined magnetic resonance [6] of electrons localized in IP states. 

Last decade a particular attention has been given to nanotechnologies. One of the systems widely used in micro- 

and nanoelectronics is an ensemble of small (nanosized) metal particles embedded into dielectrical or semiconducting 

matrix. In such a system electron states localized on the particle surface play significant role in particle interactions with 

surrounding matrix and interparticle interactions, in forming of system response to external electromagnetic radiation, 

in transfer of electrons throughout the system. 

The aim of the present work is the investigation of electron IP states for small metal particle and their features 

determined by finite (nano) size of particle.  

In the case of small spherical metal particle image potential causing an electron localization near particle surface 

can be approximated by the following formulae: 
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where a  is a radius of particle and eλ  is an effective image charge. To obtain energy spectrum and wave functions of 

electron IP states one must solve the Schrödinger equation for above mentioned potential 
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Here 
*

m is effective mass of electron in IP state. Due to spherical symmetry the wave function has the following form: 
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is radial part of wave function and ( , )

m
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l

 is the spherical function. 

Then the equation (2) is reduced to equation for radial function:  
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The dimensionless parameters in Eq. (3) are / ,r aρ = 2 2

0
2 / ,a E e aε =% 02 / ,b a aλ= ( 1),c = +l l where 0a  is 

the Bohr radius and l  is orbital quantum number. The equation (3) can be solved by expansion of 
( ) ( )rψ l

 in power 

series. The equation has two singular points: 1ρ =  - regular point, ρ = ∞  - essential singularity. The solution about a 

regular point ( 1ρ = ) can be written [7] in the form:  
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where A  is a constant and 
n

a are coefficients satisfy to the recurrence equation  
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The solution about infinity can be represented [8] as a power asymptotic expansion: 
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whereα ε= − % , B  is a constant and expansion coefficients 
m

b  are determined by the following expression: 
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where b
0

 is arbitrary constant. The asymptotic expansion (5) is the alternating series and so its maximal accuracy is 

achieved by cutting off the series on minimum module term [9].  

Solutions (4) and (5) must be sewed at some point 
*ρ  in which the smoothness condition should be fulfilled: 

 ( ) * ( ) * ( ) * ( ) *

1 2 1 2( ) ( ), ( ) ( ).ψ ρ ψ ρ ψ ρ ψ ρ′ ′= =l l l l  (6) 

The set of equations (6) leads to the spectrum of IP states. The convergence of 
( ) *

1 ( )ψ ρl
, 

( ) *

2 ( )ψ ρl
 and their 

derivatives [7,10] at given point 
*ρ  strongly depends on particle radius a  and dimensionless energy ε% , orbital 

quantum number l  being of minor importance. For certain values of a  and l  the series in set (6) will be convergent at 

point 
*ρ  only for ε%  falls in some interval. The estimation made for limit case of metal plane [5] shows that 

( 2363,0)ε ∈ −% . Below for definiteness the particle radius a  was taken equal to 5 nm and 0=l . Then for 
* 1.4ρ =  

the solution convergence takes place when [ 2363, 250]ε ∈ − −%  and smoothness condition is fulfilled only for two 

values of energy: 1 2185.4254ε = −%  and 2 513.5375ε = −%  which are the first and second energy levels of IP state. The 

shift of point 
*ρ  to the value 1.7  leads to the interval [ 550, 200]ε ∈ − −%  and to 2 513.5375ε = −%  and 

3 206.5863ε = −% . In similar way all energy levels of IP states may be calculated for given size of metal particle.  

The first four energy levels ( 1,2,3, 4n = ) for different values of orbital number l  are presented in Fig 1.  

 
A special interest is the possibility of investigation of IP states by magnetic resonance methods, in particular 

combined magnetic resonance. For this purpose the influence of static magnetic field on IP state should be taken into 

account. This essentially hinders the solving of the problem. A simple model was considered to gain insight into the 

behavior of real system: the energy spectrum and wave functions were calculated for an electron whose motion is 

constrained to the surface of a sphere of radius a  in the magnetic field. To restrict an electron motion the term 

corresponding to infinitely deep and narrow well at r a=  was included in Schrödinger equation. Because the radial 

motion is absent wave function can be expressed, as follows: 
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recurrence equation: 
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Fig.1. The energy diagram of IP states electron situated closed by spherically metal 

sample. The radius of particle is taken 5a nm= . Here n is the principal 

quantum number and l  is the orbital quantum number. The average 

distances from the surface are denoted by blue for each of the states and they 

are depended on l  weakly. 
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Here 0/ 2 ,λ = Φ Φ where Φ  is the flux through the equatorial plane and 0Φ is a flux quantum.  

From Eq. (8) one can obtain the continued fractions the roots of which give the energy spectrum of considered 

problem. Field dependence of energy levels leads to the complex level crossing structure [11]. The calculated 

dependence of several low-lying energy levels on magnetic field is presented in Fig.2. The similar behavior in magnetic 

field can be expected for energy levels of real IP states for small metal particles.  
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Fig.2. The energy spectrum of electron confined of sphere as 

function of magnetic field. 


