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We use transformation properties of the irreducible representations of the symmetry group of the Hamiltonian and 
properties of a continuous path to define a “failure tree” procedure for finding eigenvalues of the Schrödinger equation 
using stochastic methods. The procedure is used to calculate energies of the lowest excited states of quantum systems 
possessing anti-symmetric nodal regions in configuration space with the Feynman-Kac path integral method. Within this 
method, the solution of the imaginary time Schrödinger equation is approximated by random walk simulations on a 
discrete grid constrained only by symmetry considerations of the Hamiltonian. The required symmetry constraints on 
random walk simulations are associated with a given irreducible representation of a subgroup of the symmetry group of 
the Hamiltonian and are found by identifying the eigenvalues for the irreducible representation corresponding to 
symmetric or antisymmetric eigenfunctions for each group operator. As a consequence, the sign problem for fermions is 
eliminated. The method provides exact eigenvalues of excited states in the limit of infinitesimal step size and infinite 
time. The numerical method is applied to compute the eigenvalues of the lowest excited states of the hydrogenic and 
helium atoms. 
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I. Introduction 
The motivation for the Feynman-Kac path integral formulation comes from the difficulty of defining a measure for the real 
time Feynman path integral. Feynman’s path integral approach to quantum mechanics can be formally described by the 
expression 

 

( ) ( )/ ( ) /
1

( ; )2 1

( ) ( )iHt iA

R R

e R e t dωψ ψ ω ω−

Ω

= ∫� �

� �

�

,  (1) 

where H is the Hamiltonian operator, 1( )Rψ
�

 is the wave function at the initial time t = 0 and position 1(0) Rω =
�

, 

{ }2 1 1 2( ; ) ( ) 0 , (0) , ( )R R s s t R t Rω ω ωΩ = ≤ ≤ = =
� � � �

 denotes the set of all paths starting at 1R
�

 and ending at point 2R
�

 , A(ω) is 

the classical action of the path  and dω is a measure on 2 1( ; )R RΩ
� �

. The notation reads, the time evolution operator e-iHt / ħ 

operating on an initial function ψ evaluated at some point 1R
�

 is equal to the sum over all paths ω in 2 1( ; )R RΩ
� �

, weighted by a 

function of the action per path and employing some measure dω. Unfortunately, the path spaces of interest are infinite-
dimensional and no Lebesque-type measure dω exists for real A(ω). Exner [1] states a theorem asserting that the Feynman-
type measures cannot exist because the exponential term in Eq. (1) is wildly oscillating unless A(ω) is purely imaginary. 

Therefore, the path integrals under consideration denoted by dω∫  are not integrals in the Lebesque or Riemann sense. 

Several approaches [1] have been attempted in order to define meaning to Eq. (1). Most approaches try to bypass this 

difficulty by defining a suitable class of functions 1( )Rψ
�

 whose behavior would be smooth enough in some sense to cancel 

the influence of the oscillations. 
One approach to obtaining finite Feynman path integrals involves analytical continuation in time. Consider the 

Hamiltonian operator 1 2

2
H V= − ∇ +  and assume that the potential V is continuous. Instead of e-itH, one may try to get a 

path integral expression for e-tH. Eq. (1) becomes 

 ( )2

1 0
( ; )2 1

1
( )( ) exp ( ) ( ( )) ( )

2

tHt

R R

e f R s V s d f Dω ω ω ω ω−

Ω

 = −  ∫ ∫
� �

�
� ,  (2) 

where ( )21
02

( ) ( ) ( ( ))tA s V s dω ω ω ω= −∫ �  is the action for the Brownian motion path ω and Dω is a probability measure on 

the space of all Brownian motion trajectories starting at 1(0) Rω =
�

 and ending at 2( )t Rω =
�

. The difference between Eq. (1) 

and Eq. (2) is that the Wiener integrals have a mathematically well-defined measure.  
Kac applied Wiener measure to Feynman path integrals to obtain what is now known as the Feynman-Kac 

formula: 

 ( ) ( ) ( )
0

( )

( ) exp ( ( )) ( ) ( )
tH t

R

e R V d t dψ ω τ τ ψ ω µ ω−

Ω

= −∫ ∫
�

�

,  (3) 

where V is the potential in the Hamiltonian operator 1 2

2
H V= − ∇ + , ( )RΩ

�

 is the set of all continuous paths ω on the 

interval [0,t] in N dimensional real space ℜN such that (0) Rω =
�

, µ(ω) denotes Wiener measure (i.e. a probability measure on 

the set of all possible trajectories of Brownian motion in ℜN initially started at position R
�

), and ψ is any function which is 
Lebesque square integrable, denoted ψ ∈ L2(ℜN). The notation L p(ℜN) stands for the set of all functions ( )f r

�

 which are 

Lebesque measurable on some family of Borel subsets BBBB  of ℜN and have the property that 
p N

B

f d r < ∞∫  for 1 p≤ ≤ ∞  

and B ∈ BBBB . A rigorous proof of the Feynman-Kac formula and limitations of its application are given by Reed and Simon [2]. 
The Feynman-Kac formula gives an expected value of a path integral with respect to Wiener measure. If every 

random path ω(t) initially begins at some position 0 (0)r ω=�

, the function ψ is defined to be a delta function, 

( ) 0(0) ( (0) )rψ ω δ ω= − �

. Substituting this into Eq. (3) yields 

 
00

0

S( , ) exp ( ( ))
t

rt r E V dω τ τ
  

≡ −     ∫�

�

,  (4) 

where 
0
( )rE ⋅�  is the expected value of the Wiener integral with 0 (0)r ω=�

 the initial position of a Wiener process 

(Brownian motion). 
The Feynman-Kac path integral method was first applied in finding the ground state energy of a one-dimensional 

physical system by Donsker and Kac [3]. It has been generalized for dimensions N > 1 for a large class of potential 
functions [4] including those potentials with 

1
r

−�
 singularities (for example the Coulomb potential). The exact solution for 

the ground state eigenvalue may be written 



Feynman-Kac path integrals and excited states of quantum systems 

Magnetic Resonance in Solids. Electronic Journal. Vol.6 (2004) 40
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t
t r V r r d r r r d r
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Ω Ω
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where 
1 2

, ,...,
Nr r r

 ∂ ∂ ∂∇ =  ∂ ∂ ∂ 
 is the gradient and ⋅  is the scalar product in some region contained in an N-dimensional 

real configuration space, Ω0 ⊂ ℜN. 
The Feynman-Kac path integral method has been used in more recent literature [5,6] to calculate the ground state energies of 
several atomic and exactly solvable quantum systems. The solutions for the ground state eigenvalues were approximated by 
random walk simulations on a discrete grid, based on the Donsker-Varadhan invariance principle [7] for Brownian motion. 
The method provides exact ground state eigenvalues in the limit of infinitesimal step size and infinite time.  

A desired extension of the method is application to excited states of quantum systems. For a given Hamiltonian H, 
which describes a quantum system, if additional constraints were added requiring random walk simulations on a 
discrete grid to remain confined in a configuration space region the bounds of which coincide with the zeroes of an 
excited eigenstate, called a nodal region, the Feynman-Kac method would converge to the eigenvalue of that eigenstate. 
However, for most quantum systems, one does not know where the eigenfunction changes from positive to negative. 
This is related to the sign problem in stochastic methods. A useful approximation is the fixed-node approximation, 
where a trial function with known nodal regions is used to approximate the exact eigenfunction. If the trial function 
nodes exactly correspond to the true eigenfunction nodes, then the exact eigenvalue can be calculated. A survey of 
different stochastic methods used to solve the Schrödinger equation for many body systems is given in [8-10]. 

In this paper we show that for quantum systems possessing particular symmetries in configuration space, it is possible to 
use representation theory of finite groups and properties of the continuous path to develop constraints on the random walk in 
order to compute the lowest energy of a state that transforms according to a chosen irreducible representation of the invariant 
group of the Hamiltonian within the Feynman-Kac path integral method. These constraints are incorporated into a procedure 
called the “failure tree” method. In Section II we present precise definitions of a nodal region and a continuous path as well as 
several theorems related to properties of eigenstates associated with a nodal region. In Section III we introduce the “failure 
trees” and describe how they are implemented. In Section IV we present several theorems from representation theory of finite 
groups and use them to define the “failure trees”. In Section V we describe how symmetry considerations are applied in the 
creation of “failure trees” and present the results of numerical calculations for excited states of the hydrogenic and helium 
atoms. Conclusions are presented in Section VI. 
 
II. Properties of bounded regions of configuration space 
For further consideration, a few definitions and properties related to the continuity of a path in configuration space will be 

needed. Given two separate points 1R
�

 and 2R
�

 in N-dimensional space Nℜ , for every continuous path ( )1 2,P R R
� �

 connecting 

the points there exists at least one set of one dimensional continuous parametric functions 

( ) ( ) ( )1 1 2 2 1 2 1 2, , , , , ,..., , ,Nf R R t f R R t f R R t
� � � � � �

nΩ , with the parameter t, [0 ≤ t ≤ T], so that the path can be represented by the 

set of points 

 ( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

1 1 2 1 1 2 1 1 2

1 1 2 1 1 2 1 1 2
1 2 2

1 1 2 1 1 2 1 1 2

, , , ,0 , ,

, , , ,0 , ,
,  with  and 

, , , ,0 , ,

N

f R R t f R R f R R T

f R R t f R R f R R T
P R R R R R R

f R R t f R R f R R T

    ≡ ∈ℜ = = =    

� � � � � �

� � � � � �
� � � � � �

� � �
� � � � � �

 (6) 

In general, there may be an infinite number of different continuous paths between 1R
�

 and 2R
�

. 

Consider a physical system defined by a Hamiltonian 1 2

2
H V= − ∇ +  on a configuration space region 0

NΩ ⊆ ℜ , 

which has a boundary 0∂Ω  that defines the limits of the system. It has been shown by Ray [11] that there exists a set of 

eigenfunctions { }( )n Rψ
�

 on 0Ω  such that ( ) ( )n n nH R Rψ λ ψ=
� �

 and ( ) 0n Rψ =
�

 on 0R ∈ ∂Ω
�

. A nodal region mΩ  is a 

connected sub-region 0mΩ ⊆ Ω  with bound m∂Ω  defined as the set of points R
�

, where ( ) 0m Rψ =
�

, which are called the 

nodes of the eigenfunction. By connected it is meant that for every two separate points in the nodal region, 1 2, mR R ∈ Ω
� �

, there 

exists at least one continuous path between them contained in the nodal region that does not contain any boundary point. This 

implies there are no internal nodal regions that divide Ωm into smaller sub-regions. Given an eigenfunction ( )m Rψ
�

, the entire 

open set 0Ω  can be decomposed into a countable set of disjoint connected nodal regions { }( )m iRΩ
�

. 
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Some characteristics of nodal regions for fermion systems have been explored in [12-15]. A few properties of the 
eigenfunctions and their nodal regions are described by the following three theorems. Proofs of the theorems are given 
elsewhere [16-18]. 

Theorem 1. The ground state 1( )Rψ
�

 and only the ground state of a quantum system described by the Hamiltonian 

H has no internal nodes. 

Theorem 2. Application of the Feynman-Kac method to any nodal region consistent with an eigenfunction ( )m Rψ
�

 

of the Hamiltonian will produce the eigenvalue mλ  of that state. 

Theorem 3. If any nodal region Ωm of an eigenfunction ( )m Rψ
�

 is entirely contained in any nodal region Ωn of 

another eigenfunction ( )n Rψ
�

, then the corresponding eigenvalue λm is greater than or equal to λn: m n m nλ λΩ ⊂ Ω ⇒ ≥ . 

It follows from the properties described by theorems 1-3, that if one can confine a random walk to a closed bounded region in 
configuration space that coincides with the zeros of the mth excited state of the quantum system under consideration, the 
corresponding eigenvalue λm can be calculated using the Feynman-Kac method. Thus, the fundamental problem is to devise a 
random walk that starts and remains in this region throughout the entire walk. It will be shown below that this can be done for 
some physical systems by taking into consideration symmetry properties of the Hamiltonian in configuration space and 
properties of a continuous path. 
 
 
III. Introduction of the “failure trees” 
Let θ represent a configuration space operator such as rotation, permutation or inversion, which takes a 3N-dimensional 
position vector 

1 1 1 1 2( , , , , , )NR x y z x z≡
�

…
 and transforms it to another vector 1

1 1 1 1 2( , , , , , )NR x y z x zθ − ′ ′ ′ ′ ′≡
�

…
. If a Hamiltonian 

remains invariant to θ, then it is said that the system possesses symmetry with respect to θ and this implies the operation 
commutes with the Hamiltonian, [H,θ] = 0. For every operator θ that commutes with the Hamiltonian and for every 
eigenfunction ( )n Rψ

�

 of H, it is also true that ( ) ( )n n nH R Rθψ λ θψ=
� �

. That is, ( )n Rθψ
�

 is also an eigenfunction of H with the 

degenerate eigenvalue λn. If ( ) ( )m m mR c Rθψ ψ=
� �

 and cm < 0, and if ( )m Rψ
�

 is continuous in the full configuration space Ω0 

containing R
�

 and 1Rθ −
�

, then there must be some position R′
�

 where ( ) 0m Rψ ′ =
�

. This implies that at least one node exists 

for continuous ( )m Rψ
�

. 

Define a nodal region 1( )m RΩ
�

 around a point 1R
�

, that belongs to the full configuration space 0Ω  as the largest 

connected open subregion of points { }R
�

 that can be reached from 1R
�

 such that 1( )mR R∈Ω
� �

 implies 1
1( )mR Rθ − ∉ Ω
�

. 

Configuration space is then divided into two disjoint subsets, 1( )m RΩ
�

 and 0 1( )m RΩ − Ω
�

 respectively, and every 

continuous path 1( , )P R Rθ −
� �

 must cross a nodal surface. From the set of all possible continuous paths from a point 1R
�

 

to 2 1( )mR R∈ Ω
� �

, every path that remains interior to the nodal region, denoted 1 2( , ) mP R R ⊂ Ω
� �

, requires that every 

1 2( , )R P R R∈
� � �

 implies 1
1 2( , )R P R Rθ − ∉

� � �

. All paths that meet this requirement are interior to the nodal region. All paths 

that do not meet this requirement contain a continuous subpath 1( , )P R Rθ −
� �

 as part of the full path 1 2( , )P R R
� �

 that leaves 

the nodal region. 

In general, the condition that a point 1Rθ −
�

 is not included in a path must be checked at each step in a random walk 

numerical simulation for each and every point R
�

 contained in the path. If any such point 1Rθ −
�

 is found, the path has left the 
nodal region and must be assigned a numerical weight of zero. Otherwise, the path is fully contained in the nodal region and 
provides a nonzero contribution to the Feynman-Kac path integral. For many Hamiltonians there are configuration space 
operators θ that possess symmetry relations that can be utilized along with continuity properties of a path to simplify the 
procedure of checking each step in a random walk simulation. The procedure used in this paper to check the condition that a 

point 1Rθ −
�

 is not included in a path is called the “failure tree” method and is described in the following paragraphs. 
In order to determine whether a numerically simulated path remains interior to a nodal region we utilize the definition of 

a continuous path given above. According to Eq. (6) the existence of a subpath 1( , )P R Rθ −
� �

 implies that it can be represented 

by at least one set of one-dimensional continuous parametric functions { }1( , , ), 1,2,3if R R t i Nθ − =
� �

� , with the parameter t, 

[ ]0 t T≤ ≤ . As the random walk path is traced out in a numerical simulation, its representation by all parametric functions 
1( , , )if R R tθ −

� �

 must be checked. When a single parametric function is found to represent the set of points of the simulated 

path 1( , )P R Rθ −
� �

, the path is still interior to the nodal region because the other N-1 parametric functions do not represent the 

path. It is only necessary to assign zero contribution from the path when all N parametric functions have are shown to 
represent the simulated path. This process can be graphically represented using a “failure tree” as shown in Fig. 1. 
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f1 (R,θ-1 R,t) f2 (R,θ-1 R,t) f3 (R,θ-1 R,t) fN (R,θ-1 R,t)

 
 

Fig. 1. Illustration of a failure tree 
 

The figure can be understood as two points (top and bottom) connected by N parallel switches. The nonexistence of 
1( , , )if R R tθ −

� �

 is represented by the switch turned “on” and the existence of 1( , , )if R R tθ −
� �

 by the switch turned “off”. 

Thus, finding that the j-th condition 1( , , )jf R R tθ −
� �

 does occur turns off one switch, yet the tree still connects the top to 

the bottom of the graph. Only after all switches are turned off is the connection broken. Likewise, if all 1( , , )if R R tθ −
� �

 

are found to represent the path, the necessary conditions have been demonstrated for the existence of a continuous path 

between two points R
�

 and 1Rθ −
�

. 
 
IV. Application of group theory 
Group theory considerations can be used to define the necessary symmetry constraints for construction of “failure trees” 

that allow selection of random walk paths that do not leave a configuration space region ( )m RΩ
�

. Consider a set of 

coordinate transformations that commute with the Hamiltonian and form a group G with elements θj. We can define a 
projection operator q

lm
Γ

P  for the irreducible representations of the group by 

 ( )*

1

G

q

lm G

O
q q

lm j j
j

d

O
θ θ

Γ =

= Γ∑P ,  (7) 

where q
lmΓ  is the mth row and nth column of the q-th irreducible representation of the element θi, gd  is the dimension of the 

irreducible representation and OG the order of the group. The projection operator can be used to project out eigenfunctions that 
possess the symmetry of a given irreducible representation Гq. 

In the remainder of this paper we will consider one-dimensional irreducible representations, all of which possess 
properties described by the following theorems, which can be easily proved from the definition of the projection operator 
[19,20]. 

Theorem 4. All operators jθ  of the group G  commute with every projection operator of all one-dimensional irreducible 

representations: , 0q
lm

j jθ θ
Γ

  = ∀ ∈ P G . 

Theorem 5. Given an arbitrary function f, the q-th projection from a one-dimensional irreducible representation: 

, 0q q q
lm lm lm

j j ig c gθ θ
Γ Γ Γ

  = ⇒ = P , where 0qg ≠ , is an eigenfunction of all operators θj of the group with eigenvalue 

*1 ( )q
iθΓ , { }*1 ( )q q q

i ig gθ θ= Γ  for all θj in G and all q. 

Theorem 6. Every one-dimensional irreducible representation qΓ  is uniquely defined by the eigenvalues 

{ }*1 ( )q
iθΓ  of the elements { }jθ  of group G. 

As shown in Theorem 6, since every nonzero projection of a function q qg f= P  is an eigenfunction of each operator θi, 

there is a unique set of eigenvalues { }*1 ( )q
iθΓ  that describes each irreducible representation. The required symmetry 

properties associated with a given irreducible representation can be found by identifying the eigenvalues { }*1 ( )q
iθΓ  as 

being either 1± , corresponding to symmetric or antisymmetric eigenfunctions. 

We note that every nonzero projection made on an eigenfunction of the Hamiltonian ( )q q
mg Rψ= P

�

 remains an 

eigenfunction of the Hamiltonian. This is due to the fact that [ , ] 0iH θ = , which implies , 0i iH bθ  = ∑  for all 

constantsib . Since the projection gq must satisfy the symmetry properties of the irreducible representation Гq, qg  must 

possess all symmetry nodes associated with Гq. The relevant symmetry property (antisymmetry) is identified by finding 

the subset of operators { }jθ  such that q q
j g gθ = − . 

Using this antisymmetry property for the qth irreducible representation, it is possible to construct “failure trees” in 
order to select random walk paths that do not violate the symmetry requirements of the projected eigenfunction 

( )q
m RψP

�

. The only constraints imposed on a random walk are defined from the symmetry requirements for the 



N.G. Fazleev, J.L. Fry, J.M. Rejcek 

Magnetic Resonance in Solids. Electronic Journal. Vol.6 (2004) 43

irreducible representation. It follows from Theorem 2 that application of the Feynman-Kac method will produce the 
lowest energy of a state that transforms according to that irreducible representation. 

 
V. Applications of the “failure tree” method 
a. Hydrogenic p and d excited states 
Consider the hydrogenic atom described as a single particle with elementary charge and mass M moving in a three-
dimensional Coulomb potential defined as 2( )V r Zke r= −� �

, where Z is an integer, k is the Coulomb constant and e is 

the electron charge. Since the Weiner integral is usually numerically simulated in Cartesian coordinates, the 
Schrödinger equation, symmetry operations and the eigenfunctions are defined in terms of Cartesian coordinates. The 
Schrödinger equation for the system can be written as 

 21
( ) ( ) ( )

2

Z
r r r

r
ψ λψ

 
− −∇   

=� � �

�
,  (8) 

with the unit of energy 2 2/U Ms= �  and 2 2/s Mke= �  the unit of length. The eigenfunctions are known exactly and 

can be expressed in terms of the cubic harmonics. By inspection of the Schrödinger equation, it can be seen that there 
are many symmetry operators, which leave the equation invariant. One is free at this point to choose operators that form 
a large number of possible subgroups, each possessing unique symmetry properties. The four configuration space 
operations 2 3 4[ , , , ]E θ θ θ  defined by 

 2

3

4

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

E x y z x y z

x y z x y z

x y z x y z

x y z x y z

ψ ψ
θ ψ ψ
θ ψ ψ
θ ψ ψ

=
= −
= − −
= − − −

 

leave the Hamiltonian invariant and form a group G1. The multiplication table and irreducible representations for the 
group are shown in Table I. 
Table I. The multiplication table and the irreducible representations for the group 1G  (the hydrogenic atom) 

 

2 3 4

2 3 4

2 2 4 3

3 3 4 2

4 4 3 2

E

E E

E

E

E

θ θ θ
θ θ θ

θ θ θ θ
θ θ θ θ
θ θ θ θ

                      

2 3 4
1

2

3

4

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

E θ θ θ
Γ
Γ − −
Γ − −
Γ − −

 

Given any subgroup of the Hamiltonian, its symmetry properties can be used to generate solutions that are either 
eigenfunctions of the Hamiltonian or linear combinations of degenerate eigenfunctions of the Hamiltonian. In the 
absence of specific knowledge of the eigenstates of the Hamiltonian, compatibility tables could be used to identify 
possible relationships with the irreducible representations of the full group. By using the projection operators defined in 
Eq. (7), it is possible to project out of the eigenfunctions of the Hamiltonian of the hydrogenic atom new eigenfunctions 
with the symmetry of the q-th irreducible representation Гq defined in Table I. The first few projected eigenfunctions for 
each irreducible representation are shown in Table II. Note that the hydrogenic spectrum has been sorted and classified 
by the irreducible representations of G1. 
 
Table II. Classification of the first few eigenfunctions for the group G1 (the hydrogenic atom) 

 

2 2

2 23

1 2 3 4

1 1

2 2
2 2

2

3 3
3 3 3

3
3 3

3

3

( )

( ) ( ) ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( )

( )

y x

z

y x xy

yz
z xz

x y

z r

s

s
p p

p

s
p p d

d
p d

d

d

r

r r r

r

r r r r

r r r

r

r

λ
λ

λ

−

−

Γ Γ Γ Γ
Ψ
Ψ Ψ Ψ

Ψ

Ψ Ψ Ψ Ψ

Ψ Ψ Ψ

Ψ

Ψ

�

� � �

�

� � � �

� � �

�

�

 

If another subgroup were constructed using a different set of operators with the property [H,θi] = 0, the entire 
spectrum could be reclassified by the new irreducible representations. For example, the subgroup G2 defined by 



Feynman-Kac path integrals and excited states of quantum systems 

Magnetic Resonance in Solids. Electronic Journal. Vol.6 (2004) 44

 5

6

3

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

( , , ) ( , , )

E x y z x y z

x y z x y z

x y z x y z

x y z x y z

ψ ψ
θ ψ ψ
θ ψ ψ

θ ψ ψ

=
= −
= −

= − −

 

also forms a group that is isomorphic to G1, but the hydrogenic spectrum would be reclassified based on the new 
irreducible representations. The particular choice of subgroup G1 above allows the classification of the hydrogenic 
spectrum in such a way that p and d eigenstates belong to different irreducible representations. 

The symmetry properties for each irreducible representation can be deduced by deriving the eigenvalue for 
every operator of the group. This will reveal the symmetric and antisymmetric properties of the projected 

wavefunctions ( )i
m RψP

�

 that transform like a particular irreducible representation Гq as stated in Theorem 6. The 

symmetry properties of the Г2 irreducible representation can be determined by using all four operators of the group 

as follows. Let [ ]12
2 2 3 44
( , ) ( , ) ( , )g x y f x y E f x yθ θ θ≡ = + − −P . Then the symmetry properties of g2(x,y) are 

determined as 

 
[ ]

[ ]

1
2 2 2 2 3 44

1
2 4 3 24

( , ) ( , )

( , ) ( , )

g x y E f x y

E f x y g x y

θ θ θ θ θ

θ θ θ

= + − − =

= + − − = +
, 

 
[ ]

[ ]

1
3 2 3 2 3 44

1
3 4 2 24

( , ) ( , )

( , ) ( , )

g x y E f x y

E f x y g x y

θ θ θ θ θ

θ θ θ

= + − − =

= + − − = −
,  (9) 

 
[ ]

[ ]

1
4 2 4 2 3 44

1
4 3 2 24

( , ) ( , )

( , ) ( , )

g x y E f x y

E f x y g x y

θ θ θ θ θ

θ θ θ

= + − − =

= + − − = −
. 

Eq. (9) shows that every function belonging to Г2 must be symmetric with respect to θ2 and antisymmetric with respect 
to operators θ3 and θ4. The antisymmetric conditions are used to define the particular symmetry constraints on a random 

walk associated with Г2 symmetry. The corresponding “failure tree” is shown in 
Fig. 2 along with the “failure trees” associated with Г3 and Г4. The notation 

iθ
|

|

 is used to denote all “failure tree” conditions associated with each 

operator θi as described in Section III. 

As each point R
�

 of a path is generated in a simulation, the particular 
antisymmetric conditions must be checked with all other points already 
generated in the path. If Г2 symmetry constraints are to be maintained, the 

whole path must be rejected when either 1
3 Rθ −
�

 or 1
4 Rθ −
�

 are also in the path. 

By this procedure, it is assured that every path that does not fail the symmetry constraints defined by Г2 belongs to 
a configuration space region with that symmetry. Using Eq. (5) and Theorem 2, of all possible configuration space 
regions consistent with the symmetry constraints, in the limit of large t, the Feynman-Kac method assures 
convergence to the lowest energy of the eigenstate with Г2 symmetry. 

The task of checking each point R
�

 in a given path in order to find if 1Rθ −
�

 is also in the path can be 
significantly simplified for many configuration space operators using “failure tree” conditions as described in 
Section III above. The “failure tree” conditions associated with operatorsθ2, θ3 and θ4 defined in Table I are 

described as follows. For every continuous path between ( , , , )R x y z=
�

 and 1
2 ( , , )R x y zθ − = −
�

, it is necessary that 

there exist continuous functions 1
2( , , )if R R tθ −

� �

 such that the following conditions hold true 

 

1 1 1
1 2 1 2 1 2

1 1 1
2 2 2 2 2 2

1 1 1
3 2 3 2 3 2

( , , ) ( , ,0) & ( , , )

( , , ) ( , ,0) & ( , , )

( , , ) ( , ,0) & ( , , )

f R R t f R R x f R R T x

f R R t f R R y f R R T y

f R R t f R R z f R R T z

θ θ θ
θ θ θ
θ θ θ

− − −

− − −

− − −

= = −
∋ = =

= =

� � � � � �

� � � � � �

� � � � � �

. 

For f1, this implies there is some t t′=  such that 1( , , ) 0x f R R tθ − ′= =
� �

. This means that a necessary condition 

to move from R
�

 to 1Rθ −
�

 is for the path to pass through x = 0. This is also a sufficient condition for a path to fail 

the antisymmetric requirement associated with operator θ2 since every point 1
2(0, , )R y z Rθ −= =

� �

. This 

antisymmetric requirement represents the yz plane at x = 0. Therefore, in order to assure that no continuous path 

between R
�

 and 1Rθ −
�

 is included in a simulation, it is both necessary and sufficient to require that every path does 
not cross the yz plane at x = 0. In order to keep this condition associated with operator θ2 independent of where 
the path begins, the sign of the product of the parametric functions at the initial x0 and the current x value, 

        

θ3  θ2  θ2 
        

θ4  θ4  θ3 
        

Г2  Г3  Г4 

Fig. 2. The failure trees for group 1G  
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0 1 0 1 0( , , ) ( , ,0)xx f R R t f R R=
� � � �

, must be checked. Then, no matter what initial value is used, the condition 0x =  

means the path has failed the antisymmetric requirement associated with operator θ2. The resulting “failure tree” 
is illustrated in Fig. 3a. 

 
The “failure tree” conditions for operator θ3 are described as follows. For every continuous path between R

�

 and 
1

3 ( , , )R x y zθ − = − −
�

, it is necessary that continuous functions 1
3( , , )if R R tθ −

� �

 be generated such that 

 

1 1 1
1 3 1 3 1 3

1 1 1
2 3 2 3 2 3

1 1 1
3 3 3 3 3 3

( , , ) ( , ,0) & ( , , )

( , , ) ( , ,0) & ( , , )

( , , ) ( , ,0) & ( , , )

f R R t f R R x f R R T x

f R R t f R R y f R R T y

f R R t f R R z f R R T z

θ θ θ
θ θ θ
θ θ θ

− − −

− − −

− − −

= =
∋ = = −

= = −

� � � � � �

� � � � � �

� � � � � �

. 

For f2 and f3, this implies there is some t t′=  and t t′′=  such that 1
2 3( , , ) 0y f R R tθ − ′= =
� �

 and 1
3 3( , , ) 0z f R R tθ − ′′= =
� �

. 

Therefore a necessary condition for a path to fail the antisymmetric requirement associated with operator θ3 is to include in the 

path any points ( ,0, )R x z=
�

 and ( , ,0)R x y=
�

. This represents a path crossing the xy plane at z = 0 and the xz plane at 0y = . 

The resulting “failure tree” is illustrated in Fig. 3b. This is also a sufficient condition for a path to fail the antisymmetric 
requirement of operator θ3. Since the reflection symmetry operators across the xy and xz planes also commute with the 
Hamiltonian for the hydrogenic system as shown in the group G2 defined above, all eigenfunctions of the Hamiltonian that are 
antisymmetric to operator θ3 must either be antisymmetric to θ5 or θ6, or a degenerate eigenstate can be projected out that does 
have this same antisymmetric property. Failing the constraints defined for both θ5 and θ6 produces the same “failure tree” that 
is defined for θ3. Therefore the “failure tree” in Fig. 3b is both a necessary and sufficient condition to describe the 
antisymmetric requirements associated with operator θ3. Note that if the reflection operators θ5 and θ6 do not commute with a 
given Hamiltonian, the “failure tree” in Fig. 3b would only be a necessary condition for a path to remain consistent with θ3 
symmetry and further checks would be needed to determine if a 
path has failed the symmetry conditions for θ3. Using the same 
procedure as described above, the necessary and sufficient 
conditions associated with operator θ4 were derived and are 
shown in Fig. 3c. 

Using the requirements associated with these operators, 
the “failure trees” for the irreducible representations defined in 
Fig. 2 can be simplified because of the redundant symmetry 
properties associated with the operators. For example, letting 

0[ 0]A xx= ≤ , 0[ 0]B yy= ≤ , 0[ 0]C zz= ≤  and using the 

property [ ]( )A A B A∪ ∩ = , the Boolean logic for the Г2 

“failure tree” reduces to [ ]( ) ( ) ( )B C A B C B C∩ ∪ ∪ ∩ = ∩ , as illustrated in Fig. 4. 

The resulting “failure tree” constraints associated with Г3 and Г4 irreducible representations are shown in Fig. 5. 
Note that any function belonging to Г1 must be symmetric with respect to every operator in the group. This implies 
every function belonging to Г1 is fully symmetric and therefore no “failure tree” will 
exist for the Г1 irreducible representation. This further implies that the ground state will 
belong to Г1. 

Consider a random walk numerical simulation to the solution of the Schrödinger 
equation of the hydrogenic atom Eq. (8), using the Feynman-Kac method as described 
in [6]. The calculation of the lowest energy belonging to Г2 (which is an excited state to 
the system and also degenerate to the eigenvalue corresponding to the lowest eigenstate 
belonging to Г3) is performed by random walk simulations of Eq. (8) with the imposed 
“failure tree” constraints defined in Fig. 5. No explicit knowledge of the nodal structure 
is used in this calculation. As noted earlier, the implementation of the “failure tree” 
constraints in the simulation will restrict the random walk to the regions where the 
wavefunction does not change sign. 

 
Fig. 3. The failure trees associated with operators θ2, θ3 and θ4 

 
 
Fig. 5. The failure trees for  

Г3 and Г4 symmetry 

Fig. 4. The failure tree for Г2 symmetry 
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Fig. 6. Plot of 0ln ( , ) /S t r t −  �

 versus t for the hydrogen 2 yp  excited state 

 

Fig. 6 shows a plot of 0ln ( , ) /S t r t −  �

 versus t including 1σ  error bars for the uncertainty, where 0( , )S t r
�

 is the 

path integral simulation result as defined in [6]. The initial position for each random walk was set at 3
0 7

ˆˆ ˆ( )r i j k= − +  

and the step size ( , , )r x y z∆ = ∆ ∆ ∆  is determined to be /x y z s n∆ = ∆ = ∆ = , where n = 900 and s and U are defined in 

Eq. (8). Note that the error bars are so small for this calculation that they do not appear. Five million paths were needed 
for this convergence. A least squares fit of the data starting at t = 28 to the equation 

 [ ]0 1 1ln ( , ) / ln /S t x t C tλ − = −   (10) 

is shown along with the exact eigenvalue. The least square fit yields the values 1ln[ ] 0.762(60)C Ut= −  and 

2 0.1377(12)py
Uλ = − , where the parentheses denote the uncertainty in the final two significant figures. This compares 

with the lowest eigenvalue ( )2 1 8 0.125py
U Uλ = − = −  for Г2 irreducible representation. The difference between the 

exact result and the numerical calculation is attributed to the finite step size and time used in the calculation. Decreasing 
the step size r∆  and increasing t would result in closer convergence to the exact eigenvalue. 

 

 
Fig. 7. Plot of 0ln ( , ) /S t r t −  �

 versus t for the hydrogen 3 xyd  excited state 
 

Fig. 7 shows the results for a random walk simulation implementing the Г4 “failure tree” in Fig. 5a. The figure 
shows a plot of 

0ln ( , ) /S t x t −    versus t including 1σ  error bars and a least square fit using Eq. (10) starting at t = 4 

with 1ln[ ] 0.155608(66)C Ut=  and 3 0.060610(50)dxy
Uλ = − . This compares with the lowest 4Γ  symmetry eigenvalue 

of 
3

1 0.05555518dxy
Uλ = − ≈ − . Twenty five million paths were needed to reduce the uncertainty for larger values of t. 
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As noted above, decreasing the step size r∆  and increasing t would result in closer convergence to the exact 
eigenvalue. These results show that the random walk simulation, using the Feynman-Kac method with imposed “failure 
tree” constraints results in energy eigenvalues for excited states of the hydrogenic atom. 

 

b. The helium 2 3P2,1,0 triplet excited state 
Consider the helium atom described as two particles with elementary charge and mass M moving in a three-dimensional 
Coulomb potential defined as 

 
2 2 2

1 2
1 2 12

( , )
ke ke ke

V r r
r r r

= − − +� �
� � � , 

where k is the Coulomb constant and e is the electron charge. The Schrödinger equation for the system can be written as 

 2
1 2 1 2 1 2

1 2 12

1 1 1 1
( , ) ( , ) ( , )

2
r r r r r r

r r r
ψ λψ

 
− − − −∇   

=� � � � � �

� � �

,  (11) 

with the unit of energy 2 2/U Ms= �  and 2 2/s Mke= �  the unit of length. One is free at this point to choose operators 

that form a large number of possible subgroups, each possessing unique symmetry properties. The two configuration 
space operations 2[ , ]E θ  defined by 

 1 1 1 2 2 2 1 1 1 2 2 2

2 1 1 1 2 2 2 1 1 1 2 2 2

( , , , , , ) ( , , , , , )

( , , , , , ) ( , , , , , )

E x y z x y z x y z x y z

x y z x y z x y z x y z

ψ ψ
θ ψ ψ

=
= − − − − − −

 

leave the Hamiltonian invariant and form a group G1. The multiplication table and irreducible 
representations for the group G1 are shown in Table III. The first few projected eigenfunctions for 
each irreducible representation of G1 are shown in Table IV. The helium spectrum has been sorted 
and classified by the irreducible representations of G1. The corresponding “failure tree” is shown in 
Fig. 8. If Г2 symmetry constraints are to be maintained, the whole path must be rejected when 

either 1
2 Rθ −
�

 is also in the path. By this procedure, it is assured that every path that does not fail the 

symmetry constraints defined by Г2 belongs to a configuration space region with that symmetry.  
 
Table III. The multiplication table and the irreducible representations for the group G1 (the helium atom) 

 
2

2

2 2

E

E E

E

θ
θ

θ θ
                      

2
1

2

1 1

1 1

E θ
Γ
Γ −

 

Table IV. Classification of the first few eigenfunctions for the group G1 (the helium atom) 

 
2

1 2

1 1 1 21 0

3 1 22 1

3 1 1 22 0

4 3 1 22 2,1,0

5 1 1 22 1

( , )

( , )

( , )

( , )

( , )

S

S

S

P

P

r r

r r

r r

r r

r r

λ

λ

λ

λ

λ

Γ Γ
Ψ

Ψ

Ψ

Ψ

Ψ

� �

� �

� �

� �

� �

 

Consider a random walk numerical simulation to the solution of the Schrödinger equation of the helium atom Eq. 
(11), using the Feynman-Kac method with the imposed “failure tree” constraints defined by Г2 irreducible 
representation. The step size for this system is determined to be 

 
100.529166 10

metersx y z
n

−×∆ = ∆ = ∆ = , 

where n = 900. Fig. 9 shows a plot of 
0ln ( , ) /S t r t −  �  versus t including 1σ  error bars for the uncertainty, where 

1 2( , , )S t r r
� �  is the path integral simulation result as defined in [6]. Four million paths were needed for this convergence. 

A least squares fit of the data starting at t = 4 to the equation [ ]0 1 1ln ( , ) / ln /S t x t C tλ − = −   is shown along with the 

lowest variational result for the eigenvalue. The least square fit yields the values 
1ln[ ] 0.278(135)C Ut= −  and 

32 P2,1,0
2.139(29)Uλ = − . This compares with the variational result for the eigenvalue 

32 P2,1,0
2.133Uλ ≈ −  for Г2 

irreducible representation [21]. These results confirm that the random walk numerical simulation to the solution of the 

 
Fig. 8. The failure tree for 

Г2 symmetry (the 
helium atom) 
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Schrödinger equation of the helium atom, using the Feynman-Kac method with imposed “failure tree” constraints 
associated with Г2 irreducible representation results in the energy for the 2 3P2,1,0 triplet excited state of the helium atom. 

 
Fig. 9. Plot of 0ln ( , ) /S t r t −  �

 versus t for the helium 2 3P2,1,0 triplet excited state 

VI. Conclusions  
A numerical procedure, the “failure tree” method, for finding solutions of the Schrödinger equation using stochastic 
methods has been developed. The procedure is based on the use of transformation properties of the irreducible 
representations of the symmetry group of the Hamiltonian and properties of a continuous path. The “failure tree” 
method is used to calculate energies of the lowest excited states of quantum systems possessing anti-symmetric nodal 
regions in configuration space using the Feynman-Kac path integral method. Within the “failure tree” method the 
symmetry constraints on random walk simulations required to remain interior to a nodal region are obtained. These 
constraints are associated with a given irreducible representation of a symmetry group of the Hamiltonian and are found 
by identifying the eigenvalues for the irreducible representation corresponding to symmetric or antisymmetric 
eigenfunctions for each group operator. Since numerical simulations are reduced to a region of configuration space 
where the many particle wave function does not change sign, and the sign problem for fermions is never encountered. 
The method provides exact eigenvalues of excited states in the limit of infinitesimal step size and infinite time. 

The “failure tree” method has been applied to compute the eigenvalues of the lowest excited states of the 
hydrogenic and helium atoms that transform as Г2, Г4 and Г2 irreducible representations, respectively. A subgroup of 
configuration space operators has been identified and the “failure trees” have been then constructed based on the 
antisymmetric properties of each irreducible representation and properties of path continuity. Sufficiency conditions and 
Boolean logic have been used to simplify the “failure trees”. 

The method described by the present work focuses on calculations of excited states with only statistical errors 
determined by the need to use finite step sizes and time for numerical simulations. 
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