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We use transformation properties of the irreducileleresentations of the symmetry group of the Ham#n and

properties of a continuous path to define a “failtree” procedure for finding eigenvalues of ther8dinger equation
using stochastic methods. The procedure is usedltolate energies of the lowest excited stateguahtum systems
possessing anti-symmetric hodal regions in condiiom space with the Feynman-Kac path integral atetivithin this

method, the solution of the imaginary time Schrgdmequation is approximated by random walk sirfariaton a

discrete grid constrained only by symmetry consitiens of the Hamiltonian. The required symmetrgstaints on

random walk simulations are associated with a girreducible representation of a subgroup of thrarsgtry group of
the Hamiltonian and are found by identifying thgegivalues for the irreducible representation cpmeding to

symmetric or antisymmetric eigenfunctions for egabup operator. As a consequence, the sign profdefarmions is

eliminated. The method provides exact eigenvaldesaited states in the limit of infinitesimal stejze and infinite
time. The numerical method is applied to compugedigenvalues of the lowest excited states of fliedgenic and
helium atoms.
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. Introduction
The motivation for the Feynman-Kac path integrairfolation comes from the difficulty of defining aeamsure for the real
time Feynman path integral. Feynman’s path integpglroach to quantum mechanics can be formallyridescby the
expression
(e—th/hw)(R) - J‘ eiA(w)/h gll(a)(t)) dow
Q(RyiRy) , (1)

where H is the Hamiltonian operatoma(ﬁl) is the wave function at the initial timie= O and positionw(0) = F?l
Q(R,;R) :{w(s)| 0<s<t,w(0)=R ,wt)= Ii’z} denotes the set of all paths startingkaand ending at poirR, , A(«) is

the classical action of the path ah@is a measure 082(R,;R) . The notation reads, the time evolution operatd¥”
operating on an initial functiop evaluated at some poiﬁil is equal to the sum over all patfein Q(Ii’z; ﬁl) , Weighted by a

function of the action per path and employing samEasuredaw Unfortunately, the path spaces of interest afiaitier
dimensional and no Lebesque-type meadwexists for realA(«). Exner [1] states a theorem asserting that tiyarfan-
type measures cannot exist because the exponmtialin Eq. (1) is wildly oscillating unles¥ «) is purely imaginary.

Therefore, the path integrals under consideratemotéd by Idw are not integrals in the Lebesque or Riemann sense
Several approaches [1] have been attempted in toddefine meaning to Eq. (1). Most approachestdrpypass this
difficulty by defining a suitable class of funct'mu/(lil) whose behavior would be smooth enough in somes gercancel

the influence of the oscillations.
One approach to obtaining finite Feynman path integralsviescanalytical continuation in time. Consider the

Hamiltonian operatoH = —%DZ +V and assume that the potentias continuous. Instead ef*', one may try to get a
path integral expression fef". Eq. (1) becomes

(eMf)R) = j exp{%f)“w(sf -V (a)(s)))da)}f wPDw, (2)
QRyiRy)
where A(w) = %j;(|d)(s)|2 - V(a)(s))) dw is the action for the Brownian motion patrandD wis a probability measure on

the space of all Brownian motion trajectories stgrat «w(0) = F?l and ending atu(t) = Ii’z The difference between Eqg. (1)

and Eg. (2) is that the Wiener integrals have demétically well-defined measure.
Kac applied Wiener measure to Feynman path intedgmlobtain what is now known as the Feynman-Kac
formula:

SHt 5 t
(e"w)®= [ exs(- [V @OMT)y(0)due), 3)
Q(R)
whereV is the potential in the Hamiltonian operatar= —%Dz +V, Q(R) is the set of all continuous pathson the
interval [0f] in N dimensional real spa¢&" such thatw (0¥ R, /() denotes Wiener measure (i.e. a probability measure

the set of all possible trajectories of Browniartiowin 0" initially started at positiorR ), andy is any function which is
Lebesque square integrable, denaiefLA(0"). The notatiorL (0") stands for the set of all functioris(r) which are

Lebesque measurable on some family of Borel sulgeté " and have the property thaﬁf |p dVr<ow for1<s p<ow
B

and BB . A rigorous proof of the Feynman-Kac formula andthtions of its application are given by Reed &iton [2].
The Feynman-Kac formula gives an expected valua péth integral with respect to Wiener measurevéry
random pathaft) initially begins at some positio, = «(0), the functiony is defined to be a delta function,

@ (a(0)) = 5(w(0)~T, ) . Substituting this into Eq. (3) yields

Stn)=E, {EXF{—]‘V W )ﬂTH, (4)

where E,b (y is the expected value of the Wiener integral wijh= w(0) the initial position of a Wiener process

(Brownian motion).

The Feynman-Kac path integral method was firstiaggh finding the ground state energy of a oneetfigional
physical system by Donsker and Kac [3]. It has bgeneralized for dimensiorld>1 for a large class of potential
functions [4] including those potentials wiFff1 singularities (for example the Coulomb potenti@he exact solution for
the ground state eigenvalue may be written
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A= |im[—1|n [é(t,ro)jj = inf jV(r)¢2(r)dNr o1 j(m¢(r),m¢(r))dNr , (5)
teol o 2QO
where [ = [aiaiaij is the gradient amél[}] is the scalar product in some region containeghifN-dimensional
rl r.2 r.N

real configuration spac€, 0 O

The Feynman-Kac path integral method has beeningadre recent literature [5,6] to calculate theund state energies of
several atomic and exactly solvable quantum systéhes solutions for the ground state eigenvalue® approximated by
random walk simulations on a discrete grid, basethe Donsker-Varadhan invariance principle [7] Boownian motion.
The method provides exact ground state eigenvadubs limit of infinitesimal step size and infiaitime.

A desired extension of the method is applicatioaxoited states of quantum systems. For a givenilktamian H,
which describes a quantum system, if additionalstamts were added requiring random walk simufetion a
discrete grid to remain confined in a configurat&pace region the bounds of which coincide with zbmes of an
excited eigenstate, called a nodal region, the feynKac method would converge to the eigenvalubatfeigenstate.
However, for most quantum systems, one does now kmbere the eigenfunction changes from positivaedgative.
This is related to the sign problem in stochast&thods. A useful approximation is the fixed-nodgragimation,
where a trial function with known nodal regionsused to approximate the exact eigenfunction. Ifttted function
nodes exactly correspond to the true eigenfunatiodes, then the exact eigenvalue can be calculAtesdirvey of
different stochastic methods used to solve the@@tihger equation for many body systems is givei8ih0].

In this paper we show that for quantum systemsgsssyy particular symmetries in configuration sp#de possible to
use representation theory of finite groups and gn@s of the continuous path to develop consgantthe random walk in
order to compute the lowest energy of a statetthiasforms according to a chosen irreducible repitation of the invariant
group of the Hamiltonian within the Feynman-Kadhpategral method. These constraints are incorpdriato a procedure
called the “failure tree” method. In Section Il pesent precise definitions of a nodal region acdrdinuous path as well as
several theorems related to properties of eigersstatsociated with a nodal region. In Section dlimroduce the “failure
trees” and describe how they are implemented. ¢ttidBelV we present several theorems from reprasienttheory of finite
groups and use them to define the “failure trelsSection V we describe how symmetry consideratiane applied in the
creation of “failure trees” and present the resoftsumerical calculations for excited states @f kiydrogenic and helium
atoms. Conclusions are presented in Section VI.

. Properties of bounded regions of configurationspace

For further consideration, a few definitions andparties related to the continuity of a path infigamation space will be
needed. Given two separate poitsand R, in N-dimensional spacél™ , for every continuous patﬁ(lil, ﬁz) connecting

the points there exists at least one set of one emdibnal continuous parametric functions
fl(lil,liz,t) , fz(ﬁl,liz,t) ey (Ii1 th) Q, , with the parameter [0<t<T], so that the path can be represented by the
set of points

f(R.R,1t) f,(R,R,0) f,(RuR,T)
P(ﬁi,ﬁz)s ROOY|R= fl(ﬁ{’ Az’t) withR= fl(ﬁljﬁz’o) andR, = fl('il’ﬁz’T) (6)
f(R.R,1t) f,(R.R,0) f,(RuR,T)

In general, there may be an infinite number ofedéht continuous paths betwe@ and Iiz

Consider a physical system defined by a Hamiltortifs —%DZ +V on a configuration space regid®, 0 O",
which has a boundargQ, that defines the limits of the system. It has bslmown by Ray [11] that there exists a set of
eigenfunctions{z//n(li)} on Q, such thatHy, (R)=Aw,(R) and ¢,(R)=0 onROJQ,. A nodal regionQ_ is a

connected sub-regiof,, 0 Q, with bounddQ,, defined as the set of poings, wheregl/m(li) =0, which are called the

nodes of the eigenfunction. By connected it is mtkaat for every two separate points in the noelgion, Iil Ii’z 0Q,,, there
exists at least one continuous path between thetained in the nodal region that does not contaynb@undary point. This
implies there are no internal nodal regions thatldiQ,, into smaller sub-regions. Given an eigenfuncﬁqr(ﬁ) , the entire

open sef), can be decomposed into a countable set of digjoimected nodal regiOI{Qm(R)} .
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Some characteristics of nodal regions for fermigsteans have been explored in [12-15]. A few prapsrof the
eigenfunctions and their nodal regions are desdrityethe following three theorems. Proofs of theotlems are given
elsewhere [16-18].

Theorem 1. The ground statdjl(ﬁ) and only the ground state of a quantum systenritbestcby the Hamiltonian
H has no internal nodes.

Theorem 2. Application of the Feynman-Kac method to anglalaegion consistent with an eigenfunctm(li)
of the Hamiltonian will produce the eigenvalde of that state.

Theorem 3. If any nodal regio,, of an eigenfunctiort//m(li) is entirely contained in any nodal regi@y of
another eigenfunctiapn(li) , then the corresponding eigenvaliygs greater than or equalidg Q . 0Q = A 24, .

It follows from the properties described by theasel¥B, that if one can confine a random walk tébasdl bounded region in
configuration space that coincides with the zerfoth® mth excited state of the quantum system uodesideration, the
corresponding eigenvalu, can be calculated using the Feynman-Kac methads, The fundamental problem is to devise a
random walk that starts and remains in this retfiomughout the entire walk. It will be shown belthat this can be done for
some physical systems by taking into considerasigmmetry properties of the Hamiltonian in configiana space and
properties of a continuous path.

[1l. Introduction of the “failure trees”
Let & represent a configuration space operator suclotagon, permutation or inversion, which takesNxddmensional
position vector|:i>1 = (X, Y3 2, Xore e nZy ) and transforms it to another vect9r1|:i>1 = (X, Y, 2y Xy 02y ) If a Hamiltonian

remains invariant ta&, then it is said that the system possesses sysnmuithr respect tof and this implies the operation
commutes with the HamiltonianH[6] = 0. For every operatoé that commutes with the Hamiltonian and for every
eigenfunctionwn(ﬁ) of H, it is also true thay 5¢/n(|i) = /‘nel//n(ﬁ) . That is,g¢n(|i) is also an eigenfunction bf with the

degenerate eigenvaldg If Hz/lm(li) = cmgl/m(li) andc,< 0, and ifz//m(li) is continuous in the full configuration spaRe
containing R and 'R, then there must be some positirh where,,(R’) =0. This implies that at least one node exists
for continuousy, (R) .

Define a nodal regiomm(ﬁl) around a pointf\’i, that belongs to the full configuration spa®g as the largest
connected open subregion of poif@ that can be reached froR such thatROQ,_ (R) implies 6'ROQ, (R).
Configuration space is then divided into two disjokubsets,Qm(ﬁl) and Qo—Qm(ﬁl) respectively, and every
continuous pathP(R,6*R) must cross a nodal surface. From the set of aipte continuous paths from a poiRt
to R, 0Q, (R), every path that remains interior to the nodaiaegdenotedP(R,R,)0Q,,
ROP(R,R,) implies 8*'ROP(R,R,) . All paths that meet this requirement are intetiothe nodal region. All paths

that do not meet this requirement contain a contistsubpattP(R,6'R) as part of the full patiP(R,R,) that leaves
the nodal region.
In general, the condition that a poiit'R is not included in a path must be checked at stghin a random walk

requires that every

numerical simulation for each and every pditcontained in the path. If any such pofitR is found, the path has left the
nodal region and must be assigned a numerical wefgtero. Otherwise, the path is fully containedhie nodal region and
provides a nonzero contribution to the Feynman-fait integral. For many Hamiltonians there are igardtion space
operatorsd that possess symmetry relations that can beadtiliong with continuity properties of a path tmglify the
procedure of checking each step in a random wailalation. The procedure used in this paper to ctilkcondition that a

point 'R is not included in a path is called the “failueet’ method and is described in the following peapls.
In order to determine whether a numerically sinmglgiath remains interior to a nodal region wezatithe definition of

a continuous path given above. According to Eqth@)existence of a subpalf(R, 8 *R) implies that it can be represented
by at least one set of one-dimensional continuamametric functionﬁ{ f, (RE'R),i=123- N} , with the parametey
[Os t< T] . As the random walk path is traced out in a nuraksimulation, its representation by all parardtinctions
f, (R, 6*R,t) must be checked. When a single parametric fungidound to represent the set of points of theukited

path P(R,67'R), the path is still interior to the nodal regiorchese the other N-1 parametric functions do naesemt the

path. It is only necessary to assign zero contaburom the path when all N parametric functiorarsén are shown to
represent the simulated path. This process caraphigally represented using a “failure tree” asaahin Fig. 1.

Magnetic Resonance in Solids. Electronic Journal. Vol.6 (2004) 41



Feynman-Kac path integrals and excited states of quantum systems

f,(ROLRY) f,(ROLRY) f,(ROLRY) f (RO RY)

Fig. 1. lllustration of a failuretree

The figure can be understood as two points (topbextebm) connected by N parallel switches. The rmtence of
f (R,'R,t) is represented by the switch turned “on” and tkistence of f, (R, 'R,t) by the switch turned “off”.

Thus, finding that th¢-th condition f, (R,8R,t) does occur turns off one switch, yet the tre¢ atihnects the top to

the bottom of the graph. Only after all switches turned off is the connection broken. Likewiseallf f, (RO'R1)
are found to represent the path, the necessarytmdhave been demonstrated for the existen@ecaitinuous path
between two point®k andd'R.

IV. Application of group theory
Group theory considerations can be used to ddfie¢cessary symmetry constraints for constructidfailure trees”

that allow selection of random walk paths that d¢ leave a configuration space regi%(ﬁ). Consider a set of

coordinate transformations that commute with thenttanian and form a groug with elements. We can define a
projection operatoil’rq for the irreducible representations of the groyp b
Im

m o O]

d, & .
Trq :_qzrlqm (61)91 ' (7)
c j=1

where [ is the mth row and nth column of theh irreducible representation of the eleménd, is the dimension of the

irreducible representation ag the order of the group. The projection operatartzaused to project out eigenfunctions that
possess the symmetry of a given irreducible reptatenr ™.

In the remainder of this paper we will consider -dimaensional irreducible representations, all oficlvhpossess
properties described by the following theorems,cividan be easily proved from the definition of gnejection operator
[19,20].

Theorem4. All operatorsg; of the groupg commute with every projection operator of all ali@ensional irreducible
representation{z?rﬁm 6, } = 06 Og.

Theorem 5. Given an arbitrary functiof) the g-th projection from a one-dimensional irreducibdgpresentation:

rlqm,
Yre @), 69° ={yyr* @)} o° for all §in g and allg.
Theorem 6. Every one-dimensional irreducible representatio” is uniquely defined by the eigenvalues
{J/Fq* @ )} of the eIement:{Hj} of groupg.

As shown in Theorem 6, since every nonzero prajaaf a functiong® =P%f is an eigenfunction of each operathr

[LP 49]1:0: 6,0, =G0 , where g* 20, is an eigenfunction of all operatoé of the group with eigenvalue

there is a unique set of eigenvaIL{d,éFq* @ )} that describes each irreducible representatioe. réfjuired symmetry

properties associated with a given irreducible@spntation can be found by identifying the eigauwa{]/Fq* @ )} as
being eithert1, corresponding to symmetric or antisymmetric efgeations.

We note that every nonzero projection made on gengiinction of the Hamiltoniarg® = 2%_(R) remains an
eigenfunction of the Hamiltonian. This is due te tfact that[H,§] =0, which implies[H,> b6 |=0 for all
constant . Since the projectiog? must satisfy the symmetry properties of the irctiole representation”, g* must
possess all symmetry nodes associated Wit he relevant symmetry property (antisymmetryiplentified by finding
the subset of operato{ﬁj} such thatg, g* = -g*.

Using this antisymmetry property for the gth irreithle representation, it is possible to constrdatitire trees” in
order to select random walk paths that do not téokhe symmetry requirements of the projected digeaion

qum(ﬁ). The only constraints imposed on a random walk defined from the symmetry requirements for the
42 Magnetic Resonance in Solids. Electronic Journal. Vol.6 (2004)
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irreducible representation. It follows from Theor@nthat application of the Feynman-Kac method witbduce the
lowest energy of a state that transforms accortirigat irreducible representation.

V. Applications of the “failure tree” method
a. Hydrogenic p and d excited states
Consider the hydrogenic atom described as a sipayléicle with elementary charge and méssnoving in a three-

dimensional Coulomb potential definedvds) = —Zke2/|f|, whereZ is an integerk is the Coulomb constant aeds
the electron charge. Since the Weiner integral ssally numerically simulated in Cartesian coordisatthe

Schrédinger equation, symmetry operations and igien&unctions are defined in terms of Cartesianrdioates. The
Schrddinger equation for the system can be wréten

1 ... Z N = =
I:—EDZU)—T} Y(r) =Ay(r), (8)
]
with the unit of energyd =#?/Ms? and s=#4?/Mke® the unit of length. The eigenfunctions are knowaotly and

can be expressed in terms of the cubic harmonigsngpection of the Schrédinger equation, it carséen that there
are many symmetry operators, which leave the eguativariant. One is free at this point to choogerators that form
a large number of possible subgroups, each pomgessique symmetry properties. The four configomtspace
operationyE, 8,,6,,6,] defined by

Ey(xy,2)=¢(xy.z)

sz(xi yi Z) :l//(_x, y,Z)

(%Y, 2) = (X,~y,~2)

O (%Y, 2) =4 (-%,-y,~2)
leave the Hamiltonian invariant and form a gragip The multiplication table and irreducible reprdsgions for the

group are shown in Table I.
Table | The multiplication table and the irreducible representations for the group G, (the hydrogenic atom)

|E 6, 6, 6, E 6, 6, 6,
E|E 6 6 6, 1 1 1 1
6,16, E 6, 6, | 1 1 -1 -1
6,16, 6, E 6, r°l 1 -1 1 -1
6,16, 6, 6, E | 1 -1 -1 1

Given any subgroup of the Hamiltonian, its symmeirgperties can be used to generate solutionsatbagither
eigenfunctions of the Hamiltonian or linear combimas of degenerate eigenfunctions of the Hami#toniln the
absence of specific knowledge of the eigenstatethefHamiltonian, compatibility tables could be dige identify
possible relationships with the irreducible repréasions of the full group. By using the projectioperators defined in
Eq. (7), it is possible to project out of the eifygrctions of the Hamiltonian of the hydrogenic atoew eigenfunctions
with the symmetry of theg-th irreducible representatidi? defined in Table 1. The first few projected eigemdtions for
each irreducible representation are shown in THbNote that the hydrogenic spectrum has beeredaahd classified
by the irreducible representations@f

Table |l Classfication of thefirst few eigenfunctions for the group G, (the hydrogenic atom)

r 2 rs r

A WL(r)

A | W, () wzpy(r) wsz(r)

‘Pzpz(f)

A | W (r) w3py(r) Lugpx(r) lvadxy(r)
Wy, (1) ‘Pspz(r”) ‘Pzdxz(r”)
Wa, (1)

Wy, , ()

If another subgroup were constructed using a diffeiset of operators with the property, §] = 0, the entire
spectrum could be reclassified by the new irredaaibpresentations. For example, the subggupefined by
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Ep(xy,2)=¢(x,y,2)
95[//()(1 Y Z) :l//(X,_y,Z)
06w(xv yv Z) = l//(X1yv_Z)
63[//()(! Y Z) :l//(X,_y,_Z)
also forms a group that is isomorphic ¢ but the hydrogenic spectrum would be reclassifiaded on the new
irreducible representations. The particular chaesubgroupg; above allows the classification of the hydrogenic
spectrum in such a way thatndd eigenstates belong to different irreducible repnégtions.

The symmetry properties for each irreducible repméstion can be deduced by deriving the eigenvédue
every operator of the group. This will reveal thgmsetric and antisymmetric properties of the prtgdc

wavefunctionszf"gl/m(f{) that transform like a particular irreducible reggatationl’™ as stated in Theorem 6. The
symmetry properties of thg® irreducible representation can be determined fiyguall four operators of the group
as follows. Let g,(x,y)=2°f(x,y)=3[E+6,-6,-6,] f(x,y). Then the symmetry properties @b(xy) are
determined as
6,9,(x,y) = 02%[E +02_03_04] f(x,y)=
=1[6,+E-6,-6] f(xy) =+g,(x,y)
6,9,(x,y) = 93%[E +92_03_04] f(x,y)=

=1[6,+6,-E-6,] f(x y) =-g,(x.y)
0,9,(x,y) = 04%[E +02_03_04] f(x,y)=

:%[64 +93_92_E] f(Xy)=-g,(xy) .

Eq. (9) shows that every function belonging famust be symmetric with respect@and antisymmetric with respect
to operatorg?; and g,. The antisymmetric conditions are used to defmgegarticular symmetry constraints on a random
walk associated with? symmetry. The corresponding “failure tree” is shaw
m ﬂ m Fig. 2 along with the “failure trees” associatedhwi® andI'*. The notation
is used to denote all “failure tree” conditionss@siated with each

m operatorg as described in Section IIl.

As each pointR of a path is generated in a simulation, the pakic
antisymmetric conditions must be checked with aheo points already
generated in the path. I? symmetry constraints are to be maintained, the
whole path must be rejected when eitt&tR or ;'R are also in the path.
By this procedure, it is assured that every path tloes not fail the symmetry constraints defingd bbelongs to
a configuration space region with that symmetrying<€q. (5) and Theorem 2, of all possible confajion space
regions consistent with the symmetry constraints,the limit of large t, the Feynman-Kac method assu
convergence to the lowest energy of the eigenstitel'> symmetry.

The task of checking each poiR in a given path in order to find i®*R is also in the path can be
significantly simplified for many configuration spa operators using “failure tree” conditions asadig®d in
Section Ill above. The “failure tree” conditionssasiated with operatoé, & and g, defined in Table | are

described as follows. For every continuous patlwbenh R=(x,y,z,) and Gglli:(—x, y,2), it is necessary that

(9)

r? rs r

Fig. 2. Thefailure treesfor group G

there exist continuous functionS(ﬁ, Hglli,t) such that the following conditions hold true

f(RE,'Rt) f,(RE;'R,0=x&f (RE,RT)=-x
f,(RG'Rt)Of,(RE,'R,0=y&f,(REI;RT)=y.
f,(RE,'Rt) f,(RO,'R,0=2&f,(RE,RT)=2

For f;, this implies there is some=t' such thak = f (R,8'R,t') = 0. This means that a necessary condition

to move fromR to 8'R is for the path to pass throughs 0. This is also a sufficient condition for a pathfail
the antisymmetric requirement associated with operaf, since every point R=(0,y,z)= Hz‘lli. This
antisymmetric requirement represents yaeolane atx = 0. Therefore, in order to assure that no continyzaih

betweenR and 'R is included in a simulation, it is both necessany sufficient to require that every path does

not cross thez plane atx = 0. In order to keep this condition associated weipferatoré independent of where
the path begins, the sign of the product of theapmtric functions at the initiaty and the currenk value,
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xx, = f,(R, R1)f,(R,,R,0), must be checked. Then, no matter what initialugais used, the conditiox =0

means the path has failed the antisymmetric remérg associated with operatésy. The resulting “failure tree”
is illustrated in Fig. 3a.

|xx(‘§0| |yy1,§0| |szi,50| |xx0S0| |yyﬂSO| |zzaS0|
|
| |
6, o, 0,
a b c

Fig. 3. Thefailure trees associated with operators &, & and &,

The “failure tree” conditions for operatdk are described as follows. For every continuouk patweenR and
6,'R=(x,—y,-z), it is necessary that continuous functiohéR, 4,’R,t) be generated such that

f(RE'Rt) f(RO;'R,0=x&F,(RE;RT)=x
f,(RG;'Rt) 0f,(R,6;'R,0)=y & f,(R,E;'RT)=-y.
f,(RE;'Rt) f,(RE;'R,0)=2&F,(RE,RT)=-z

For f, andfs, this implies there is some=t' andt =t" such thaty = f,(R,6;'R,t')=0 and z= f,(R,6;'R,t")=0.
Therefore a necessary condition for a path tdteilntisymmetric requirement associated with apeéis to include in the
path any pointsR = (x,0,z) andR = (x, y,0). This represents a path crossingnplane az= 0 and thez plane aty = 0.

The resulting “failure tree” is illustrated in Figp. This is also a sufficient condition for a péathfail the antisymmetric
requirement of operatofs. Since the reflection symmetry operators acroesqthand xz planes also commute with the
Hamiltonian for the hydrogenic system as showiéngroupg, defined above, all eigenfunctions of the Hamikiorthat are
antisymmetric to operatd® must either be antisymmetric &or &, or a degenerate eigenstate can be projectetiatutdes
have this same antisymmetric property. Failingcthestraints defined for bo# and & produces the same “failure tree” that
is defined for &. Therefore the “failure tree” in Fig. 3b is bothnacessary and sufficient condition to describe the
antisymmetric requirements associated with opetddote that if the reflection operatafisand & do not commute with a
given Hamiltonian, the “failure tree” in Fig. 3b wld only be a necessary condition for a path tcaieroonsistent witte;
symmetry and further checks would be needed tardete if a
path has failed the symmetry conditions &r Using the same
procedure as described above, the necessary afidiestf
conditions associated with operatéy were derived and ar
shown in Fig. 3c.

Using the requirements associated with these apsral
the “failure trees” for the irreducible represeitas defined in
Fig. 2 can be simplified because of the redundgntnsetry
properties associated with the operators. For elgnigtting
A=[xx,<0], B=[yy,<0], C=[zz,<0] and using the

property [AO(An B)|=A, the Boolean logic for thd™?

“failure tree” reduces t¢B n C) J[AO(Bn C)] =(Bn C), as illustrated in Fig. 4.

The resulting “failure tree” constraints associaigth I'* andI™ irreducible representations are shown in Fig. 5.
Note that any function belonging & must be symmetric with respect to every operaiahée group. This implies
every function belonging to" is fully symmetric and therefore no “failure trewll
exist for thel'" irreducible representation. This further implikattthe ground state will

xx, <0

Ixx,, < 0| |yy“
[

Fig. 4. Thefailure tree for r? symmetry

belong tor™.
Consider a random walk numerical simulation to g¢bkition of the Schrodinger
equation of the hydrogenic atom Eg. (8), usingRegnman-Kac method as described

in [6]. The calculation of the lowest energy belimgto I'> (which is an excited state to [
the system and also degenerate to the eigenvattesponding to the lowest eigenstaté”“ <o| <o [m=
belonging tol™®) is performed by random walk simulations of Eq. {&h the imposed

“failure tree” constraints defined in Fig. 5. Nopdigit knowledge of the nodal structure -

is used in this calculation. As noted earlier, timplementation of the “failure tree” .
constraints in the simulation will restrict the dam walk to the regions where théig. 5. The failure trees for
wavefunction does not change sign. [Fand I symmetry
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Fig. 6. Plot of —In[§(t,r})} It versust for the hydrogen 2, excited state

Fig. 6 shows a plot of—In[§(t,Q)]/t versust including 1o error bars for the uncertainty, whe8t,r,) is the
path integral simulation result as defined in [Bfie initial position for each random walk was %roazg(f— j+|2)

and the step sizAr = (Ax,Ay,Az) is determined to b&x=Ay =Az = s/+/n, wheren = 900 ands andU are defined in

Eq. (8). Note that the error bars are so smaltHisr calculation that they do not appear. Fiveiorillpaths were needed
for this convergence. A least squares fit of tha déarting at = 28 to the equation

~In[S(t, %) ]/t =4, ~In[C]]/t (10)

is shown along with the exact eigenvalue. The lespiare fit yields the value$n[C] =-0.762(60YJt and

/lzpy =-0.1377(12)Y , where the parentheses denote the uncertainhgifirtal two significant figures. This compares

with the lowest eigenvaluel2py =-(1/8)U =-0.128) for I? irreducible representation. The difference betwten

exact result and the numerical calculation istauted to the finite step size and time used irctieulation. Decreasing
the step sizé\r and increasingwould result in closer convergence to the exaygrralue.
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Fig. 7. Plot of —In[§(t,r},)} It versust for the hydrogen 3d,, excited state

Fig. 7 shows the results for a random walk simataimplementing th&* “failure tree” in Fig. 5a. The figure
shows a plot of—|n[§(t,x0)]/t versust including 1o error bars and a least square fit using Eq. (te0jiisg att = 4

with In[C,] =0.155608(66))t and/13de =-0.060610(5Q) . This compares with the lowe§t' symmetry eigenvalue

18
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As noted above, decreasing the step siwe and increasing would result in closer convergence to the exact
eigenvalue. These results show that the random suadi¢lation, using the Feynman-Kac method with isgab“failure
tree” constraints results in energy eigenvaluegfeited states of the hydrogenic atom.

b. The helium 2 %P, o triplet excited state
Consider the helium atom described as two partisldselementary charge and maégsnoving in a three-dimensional
Coulomb potential defined as

ke ke ke?

V()=
R AR A [
wherek is the Coulomb constant ards the electron charge. The Schrddinger equatiothe system can be written as
S5 - o | ) S A () (12)
2 AR

with the unit of energyJ =#°/Ms? and s= 72/ Mke? the unit of length. One is free at this point kmase operators
that form a large number of possible subgroupsh gassessing unique symmetry properties. The twdfigroration
space operationdE, 8,] defined by

BY (X, Y1, 2, X5, Y 2:Z2) =0 (X1, Y 121X 5. 22 5)
92‘//()(11 yl'zl'XZYyZ'ZZ):l//(_Xll_y 2y X Y 2 2)

leave the Hamiltonian invariant and form a gragp The multiplication table and irreducible
representations for the grogp are shown in Table Ill. The first few projectedegifunctions for
each irreducible representation@fare shown in Table V. The helium spectrum has Iseeted

and classified by the irreducible representatidng.oThe corresponding “failure tree” is shown in

Fig. 8. If I? symmetry constraints are to be maintained, thelempath must be rejected when_ r’
. I . . . . Fig. 8. The failure tree for
either ;"R is also in the path. By this procedure, it is e$that every path that does not fail the I’ symmetry (the

symmetry constraints defined b§/belongs to a configuration space region withskatmetry. helium atom)

Table IIl. The multiplication table and the irreducible representations for the group g; (the helium atom)

E 6,
1 1
rel1 -1

Table IV. Classfication of thefirst few eigenfunctionsfor the group G; (the helium atom)

r r2
AW, ()
AW, o ()
AW, (L)
A, ¥, 5, ()
A W, ()

Consider a random walk numerical simulation togbkition of the Schrddinger equation of the helatom Eg.
(11), using the Feynman-Kac method with the impostalure tree” constraints defined by? irreducible
representation. The step size for this systemtieraened to be

AX=Ay=Az= W meters
Jn
wheren =900. Fig. 9 shows a plot 0f-|n[§(t,r”o)}/t versust including 1o error bars for the uncertainty, where
S(t,r,F,) is the path integral simulation result as defime{6]. Four million paths were needed for this eergence.
A least squares fit of the data starting at4 to the equation|n[§(t,xo)]/t =/11—In[C1]/t is shown along with the
lowest variational result for the eigenvalue. Tleask square fit yields the valuag[c]=-0.278(135pt and
A =-2.139(29y - This compares with the variational result for tdai@envalue/]23 ~-2133y for I'’?

2%p, 14 P10
irreducible representation [21]. These results iconthat the random walk numerical simulation te golution of the
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Schrddinger equation of the helium atom, using Flegnman-Kac method with imposed “failure tree” doaists
associated witli irreducible representation results in the enecgytie 2°P, ; o triplet excited state of the helium atom.
0.0

-0.5

- o Data
- Fit
- - - - Excited State
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¢

-2.0

2.5

-3.0

0 ' i 3 s s s 7
t
Fig. 9. Plot of —In[S(t,FO)J It versust for the helium 2 3P, 1  triplet excited state

VI. Conclusions

A numerical procedure, the “failure tree” methodr, finding solutions of the Schrédinger equatiomgsstochastic
methods has been developed. The procedure is lmasdtle use of transformation properties of thedigble

representations of the symmetry group of the Hami#n and properties of a continuous path. Thduffaitree”

method is used to calculate energies of the loersited states of quantum systems possessingyantistric nodal
regions in configuration space using the Feynmao-gath integral method. Within the “failure tree’ethod the
symmetry constraints on random walk simulationsuiregl to remain interior to a nodal region are ot#d. These
constraints are associated with a given irreducigeesentation of a symmetry group of the Hamidtorand are found
by identifying the eigenvalues for the irreduciblepresentation corresponding to symmetric or amiisgtric

eigenfunctions for each group operator. Since nigalesimulations are reduced to a region of conmfigion space
where the many particle wave function does not ghasign, and the sign problem for fermions is n&rerountered.
The method provides exact eigenvalues of excit@sin the limit of infinitesimal step size andlriite time.

The “failure tree” method has been applied to campthe eigenvalues of the lowest excited stateshef
hydrogenic and helium atoms that transforni'gd™ andI'? irreducible representations, respectively. A sabgrof
configuration space operators has been identifiedl the “failure trees” have been then constructagetl on the
antisymmetric properties of each irreducible repnéstion and properties of path continuity. Sufficdy conditions and
Boolean logic have been used to simplify the “fadltrees”.

The method described by the present work focusesatmulations of excited states with only statestierrors
determined by the need to use finite step sizediaradfor numerical simulations.
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