ISOTROPIC PHASE OF NEMATICSIN POROUSMEDIA

B.M. Khasanov
Kazan State University, Kazan 420008, Russia

U30TPOITHASI ®A3A HEMATHUKOB B IOPUCTOM CPEJIE

b.M. Xacanos

Kazanckuit rocynapctBeHHblil yHuBepcuret, Kazanp

agnetic
Resonance

in Solids Volumes, No. 1,
Electronic Journal page§5-102, 2004

http://mrsej.ksu.ru




96

| sotropic Phase of Nematicsin Porous Media

ISOTROPIC PHASE OF NEMATICSIN POROUSMEDIA

B.M. Khasanov
Kazan State University, Kazan 420008, Russia

We study the effect of random porous matrices @nigbtropic- nematic phase transition. Sufficierdlgse to the
cleaning temperature, both random field and theffinatuations are important as disordering ageftaovel ran-
dom field fixed point of renormalization group etjoa was found that controls the transition fromtiepic to the

replica symmetric phase. Explicit evaluation of éxponents id = 6 —¢ dimensions yields to a dimensional reduc-
tion and three-exponent scaling.
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Liquid crystalline ordering in a confined geometas been the subject of considerable investigatimimg the past decade.
The study of liquid crystals constrained to a randetwork of porous silica aerogel has been andrearrent interest due
to their importance in technological applicationd &#om a fundamental point of view. Such liquigistal porous matrix sys-
tems emerge in many natural and technological psaese giving rise to scientific activity. One of tlundamental questions
is the effect of finite size and quenched disomethe phase transitions. Liquid crystals exhibiagety of experimentally
accessible phase transitions involving orientatiand translational ordering. Most of the studiesfacused on the nematic-
isotropic or nematic-smectic phase transitions.éxample, the first has been investigated usinipusexperimental tech-
niques [1]. The main results could be summarizedlasvs: (a) the bulk isotropic-nematic (I-N) pleasansition temperature
is shifted down and the character of the transitlteinges; (b) even for above the bulk I-N phagssitian temperature, there
exists a weak residual nematic ordering; and (cht®l&arlo simulations show that in some cases ¢neatic order is re-
placed by a quasi-long-range nematic phase.

Theoretical modeling of such phenomena is difficlite porous matrix not only geometrically confitlies liquid
crystal, but also induces a random orienting fiblak fixes the direction of the order parameten rtba surface of the
matrix. Some experiments with liquid crystals indam porous media [2] showed that the random peafed orienta-
tion of the liquid crystal along the pore surfaegh¢se normal changes direction randomly) profournufiyences the
dynamics of an I-N phase transition in such a systend fluctuations of the orientation order par@meelax at a much
slower rate than in bulk liquid crystals. These exipents have stimulated theoretical work [3], ahndandom-field
(RF) model for nematic liquid crystal has been psgal that qualitatively explains the glasslike véraseen in ex-
periments for liquid crystal-aerogel systems [28],5

The nematic phase within the pores could be modageah Ising-like system with an imposed randord fi@u-
pled directly to the orientational order parameteaccount for the random confinement. Such a masde$ a random
uniaxial anisotropy on a spin system [3,7], inchgdla symmetric coupling between the anisotropyoreatd order pa-
rameter in order to account for the “up-down” nemaymmetry. This RF term in the Hamiltonian of tiematic lig-
uid crystal is linear coupled to the order paramekbe strength of the random field in this modebdd directly de-
pend on the anchoring strength of the moleculébdsurface of the gel and indirectly on the pdyodihis model may
be described as an RF Ising model.

However, the experimentally obtained functionalrofor the scaled autocorrelation function is quitfferent
from that obtained in a simulation of the RF Ismngdel. Really, the liquid crystal is a system witlany degrees of
freedom (the order parameter tensor has five inudgr@ components) and has a different symmetry fifwenising
model.

The basic point in discussing the effect of RF odeced nematic phases follows from the Imry-Ma argot
[8,9], which suggests that this continuous symmsystem does not have nematic long-range ordetifioensions less
than four @ < 4). The possibility for the nematic phase torbplaced by a glassy state characterized by qoagk!
range order was discussed by Radzihovsky and T[@0grand also predicted by numerical simulatioh%]] and by
Feldman [12] using a renormalization group (RG)rapph.

The theory [12] is the first one that extends belythre mean field approximation for the low-temperatphase of
disordered nematics. In this low-temperature phasexial nematics in random porous media can bepee onto the
RF O(N) model. However, mapping becomes invalid nearmtiese transition to the isotropic phase. In thizepawe
focus on the effects of quenched disorder thatrdreduced by the host silica aerogel at the hagyhgerature phase,
i.e., above the I-N phase transition temperatume.appropriate model would require a full Landautennes type
Hamiltonian incorporating a random orienting fie\le carry out the mean field analysis and RG treatras well.

The order parameter for a nematic liquid crysta ithree-dimensional symmetric traceless seconkl temsor
Q. The effective Landau-de Gennes free-energy fanatiappropriate to the RF nematic model near 4Nephase
transition can be written as

F= jddx{%roTr(Q2)+%(DQ)2—%bTr(Q3)+—‘11c{Tr( )T -Tr(Kx @ )<)} 1)

wherero =T —T,, Ty is the second order transition temperatute=f0 (bulk supercooled temperature limit), dnd
are temperature independent constants. The queiRifiegs(X) is a symmetric, traceless, Gaussian random temisior
vanishing quenched averadg(x)] ., = 0 and with variance [13]

o @0 = B0, 8 +8,8,) 0,00, @

nis the dimensionality of the tensioy;.
Ground state configurations of the longitudinal poment of the fieldQ(z) (we consider here only the uniaxial
nematic) are defined by the saddle-point equation

—AQ+1,Q—bQ* +cQ’ = h(z). (3)

It will be useful to recall first what behaviorégpected for a nematic placed in a non-random, field a homogeneous
field in a uniform direction. The isotropic phasmjaires some order and is transformed into a parati@ phase. The para-
nematic-nematic phase transition occurg.at (26°/9c) (1 +h/2h). Hereh, = (6%27¢?) is a uniform critical field that deter-
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mines the nematic-paranematic critical poigt(h, ) = b* /3c . Forh < h, the paranematic supercooling temperafigrand
the nematic overheating temperatlirdboth have field dependence

+ 3/'2
T —-T
T —T,)

+7
L TiQ[

h, T —T, @

c 0
where ) correspond td, andT’, respectively. All three temperaturgs T., andT merge at the nematic-paranematic
critical point ;" . Forh > h, the order parametep will increase smoothly as temperature is decreased

Apparently, the solutions of Eq. (3) with non-horeagoudh(x) may essentially depend on a particular configura-
tion of the quenched fields. The effect of RF isr@ged over a length scadlgover which the orientation is correlated.
The mean magnitude of the sum of the random fisldgven by the sum of the squares of the randefddi Using the
central limit theorem, the effective RF which casmlo the local order parameter is approximalgly®. Now, be-

cause the order parameter is changing on a legth,ghe elastic energy term is of the fomyL)'2 . Combining the

ideas of Landau and those of Imry and Ma, it wasash that for low order parameter3 < cho/b2 , the correlation
lengthL is about a molecular length scale [7]. The freergy advantage is as though there were fixed nerfiglds
on the molecules, and it is negatively lineardn There is an energy cost in changing moleculantation from point

to point, but this is negligible because it is grdnal to Q” . Thus, for the isotropic phase the effect in thisan field
consideration is roughly the same whether the imgdigld is random or fixed.

Let us estimate under which conditions random §ielte relevant and are getting a dominant contdibdor the
ground state configurations. We divide the systetm blocks of linear size. As we have seen, the characteristic value

of the RF in this block (averaged over realizatiooyld be defined by, = hOLf'l/Q. In the case when the fields can be

considered as the dominant factor, the order pasardees not depend on the temperature and it hagpeh > 7% .
Now it is easy to estimate the characteristic sizéhe block up to which the RF can dominafex hj/‘lﬁ‘"‘/” . On the

other hand, the approximation we are using is coroaly on length scales much larger than the d@laton region
& 17" . Thus, we have another bound for L. > £ . Therefore, the temperature region where RF effeahnot be

ignored is,

>l /(286—dv)

Il < (chg =T,. (5)

Such a region of temperatures n&aexists only if236 > dv . This value ofr, can be interpreted as the estimate for
the temperature interval aroufigd in which the order parameter configurations aseatially defined by the random fields.

In the mean field theory, using Landau critical@xgnts, the above nontrivial temperature interyaexists only at di-
mensiongl < 6 and equals, = (ch; )2/ “ These simple arguments hold only in the appratidmavhere critical fluctua-
tions can be neglected. Thus, the temperature rregip where disorder induces a finite correlation length

&(hy) o (ch2) """ is correct in this regime only.

It is easy to estimate the Ginzburg criterion @& #pplicability of this approximation. For our mod#), one can
get 7, x max[b'l/m"”,c% H)} , and the above result is valid only for> 7, . On the other hand, the Ginzburg tempera-
ture region is larger than the metastable inteofahe first order I-N phase transition, > b'z/c. For weak RF such

that 7, <7 < 7, critical exponents get renormalized by thermattiiations, and in the region < 7, , RF fluctua-

tions are important as well.
The following qualitative arguments may be congtdc Actually, multiple global solutions of the skl point

Eq. (3) can appear due to the double-well locakpiial. This potential has two local minima f6y < 7' < T~ and for
the values of the fieldh < h, . At temperatures abovi , the disordered local minima solution is uniquestbelowT

however, multiple local minima solutions appeareTdnergy of the nematic solution is higher tharnclpenergy of
the disordered solutions. At further temperatungelong, the interaction of the local minima soluatois getting not
small, and we may expect the nontrivial behavidkelin spin-glasses [15], there is a large numif¢he disorder de-
pendent local energy minima. In contrast to thealispin-glass phase, these minima probably areraphby finite
energy barriers. Therefore, it is possible to ekplee existence of a finite temperature intervaiMeen isotropic and
nematic phases where the glassy-type behavior ectuthis state the standard nematic order pamneefuals zero,
(Q)]., = 0, but the bilinear averagiq)’],, is different from zero at all temperatures and/plthe role of the order
parameter of the nematic glass. At the same tiheeapplication of external magnetic fidttdrestores the long-range
orientational order, and the magnetic field thrédh® determined from the condition that the nematiherence length
& x (XEHQYV2 is less than the disorder induced correlationttergg s, ) . Here, y, is the anisotropy of the diamag-
netic susceptibility of the nematic.
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In the glass-type phase, thermodynamics is defiryedumerous disorder dependent local energy minimatich
a situation the perturbation theory and the usw@laRproach in its traditional form that gives tlwerect result for the
Hamiltonian with only one minimum cannot be usetie Tmost developed technique in this case is thisiRaplica
symmetry breaking method [16]. Using this technjqubas been proven that for tNecomponent (Vv > 1) spin sys-
tems with RF, the usual scaling replica-symmetiytsmn is unstable with respect to the replica syatrmbreaking in

the phase transition point. Moreover, it turns thiatt the spin-glass transition, which is believedake place at replica

symmetry breaking temperature, always precedefothéemperature phase and obeys the equatigp (hg)"/“*‘”

[17]. If we comparer,,, with a RF controlled temperature regiopn, we see thatr, > 7,,,. It is not clear whether
replica symmetry breaking occurs in the whole REced region 7, , or is restricted to the much smaller temperature

interval.

Now we consider the disordered I-N model, defingdEl.(1) within the high-temperature, i.e., isofophase. A
direct analysis of the Landau-de Gennes modelexriith terms of the order parameter is often supémianderstand-
ing the critical properties of the transition ame thigh-temperature phase. We assume the existérmagher strong
fluctuations of the order parameter in the isottquiase near the I-N transition, for which expenitakevidence exists
[18]. It is easy to show that all five independtarisor components are allowed to fluctuate in sb&rdpic phase in the
same manner. This has considerably simplified #dewations in comparison with the nematic phase.ti® other
hand, the Landau-de Gennes Hamiltonian has cubigaartic interaction terms, and one more is thad®i. Really,

there are three length scales in the fluctuatieomn Namely,& oc ¢ ™" ¢ o ()" and ¢, o (ch2) V"
Let one remove the fast modes and rewrite the Hani@n in terms of the block order parameter, aoading

to the scald. = al. Herea is the ultraviolet cutoff, and > 1. Then we make rescaling such a way that the Hanigh
would restore its initial form with new constaii4), c(L), andhy(L). Dimensional analysis provides estimations

(L) = 1""Pb(a), (L) = 1""c(a), hy(L) = lh,(a) . (6)
If one considers the combinatiah = ch, as a new parameter, we immediately get
A(L) = 1""A(a) . (6a)

Iteration until A(L,) =1 yields L, = &,, i.e., the length scale beyond which the RF flatiins are significant. The

same arguments are true for the order parametuéitions coming from cubic term in (1). The quatérm is an ir-
relevant variable in the RG sense. Hence, the éngth scales are important for I-N phase transitiear d = 6 . Thus
we interpret this result physically by noting tisaifficiently close to7, , the dominant disordering agent is not the RF

only, but the thermal fluctuations caused by cubieraction also. Of course, eqs. (6) are not exau corrections to
the renormalization due to the interaction are se@®y. The leading corrections to equations (6) (@a)l are propor-
tional to quadratic forms af andb?. Using the RG method for disordered systems, siourrelations are established
for the parameters of the effective replica Hamilhm. Then replica symmetry is assumed and the R@Gt®ns be-
come simple functions of replica number. In thapext, the use of replica is a trick of diagramntimg. One can gen-
erally establish identical RG equations directlydoysidering disorder correlation functions, a rdtlvhich is usually
called a replica symmetry perturbation theory. Aftandard RG transformations, the one-loop egugiio differential
form are the following

dr 7 5
=2- —=b"(1—=2r)+7A01—-2r), 7a
@0 - 20) 4 TA0 - 2) (72)
d1nb* 9
=e—3n—5b" —24A , 7b
dln L : " (75)
dln A 22
=ec—3n+—0b" —26A. 7c
dinL c K 3 (7c)

Here we pun = 3 for a nematic liquid crystal.
The exponent; determines the behavior of the two-point correlafiunctionG(q), which is defined by means of
the relation

G(a) = [(QQ9)., —[(Q@){Qa)..- (8)
At the critical pointG(q) diverges ag”? and to the lowest order in the perturbation esjmm
n="1b /18 . 9)

Inserting this expression into (7), we find thae tfixed pointsu(b®A) of the RG equations are given by
16(0,0), 11,(6£13,0), 114(0,£/26), andy/ (66/613,25%/613). The RG flow diagram in th&%{A) plane is illustrated in
figure.

In addition to the trivial Gaussian fixed poim, these equations possess three nontrivial fixadtoThe fixed
point 14, describes the critical behavior of the pure netnatid the coefficient at this point is greater than zero. Thus
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fixed-point Hamiltonian has a minima § = 0 and at@ ~ b/c . The
2 first-order transition occurs if the order paramd#dis into the later deep
minimum. It is likely that they, fixed point corresponds to the critical
b2 fluctuations about the metastable minimum@t= 0 [19]. The fixed

point 1 is exactly the RF Heisenberg fixed point for the fcomponent
O(N) model and it describes the RF behavior at thiated Landau point

Tl 3 / 4 on the phase diagram, whdse= 0 [20]. All the above fixed points are
unstable.
A The only stable fixed point ig, that controls the behavior of the

. . relevant parameters of the Hamiltonian below smetsions, and corre-
F;haseTlcqiuagram of thhe RGhqugtuoqs (7bf) %“dsponds to the replica symmetric phase with aniteficorrelation length.
(7). The arrows show the direction of the +o fiyod noint value of is less than zero, i.e., the transition tempera-
renormalization group flows. Points 1, 2, 3, . . . .

' . ture is renormalized upward. Unfortunately, thesen® unique energy
and 4 stand for the fixed points, t4, L, . . . X
. . extremum in this case. If the RG flows are smoatkthe neighborhood
and u , respectively . ;
of r =0, as is usually assumed, then it should beoredde to extrapo-
late the flows front > 0 (where the RG equations are presumably valid)
to the desired region near the fixed point.
Let us now determine the critical exponents assediwith the fixed point/. The correlation length exponent
follows directly from Eq. (7a)

v = 2+f—2b2 —14A . (10)

To obtain an expression for the critical exponenttie susceptibilityy , we recall that under the RG iterations the twisdpo
correlation function behaves like [21]

G = eXp(2,C—]‘n(L'7 )de)G,, (=InL.
0
Using the perturbation expansion f@ one can obtain
7:172b2+m. (11)
The specific heat exponent can be calculated from a singular part of the &eergy
F }111(1 +#(0))e"at,
0

where 7(() is the coefficient of the)’ term in Hamiltonian averaged over the distributadrithe RF, and!” = In ¢ .

Evaluating the above integral to leading order ind 7 ~ 7°~*, where
a=3"0 Ty _ua. (12)
2 4

Equations (9)-(12) yield the usual “thermodynamscaling law v = (2 —7), and modified hyperscaling law
2 — a = v(d — 0) with the “violation of hyperscaling” exponefit= 2 — n . This result is valid at first order in=6 —d .
In the presence of the RF, the quant{(0)) (Q(z))],, is non-zero even in phases whéf@(z))],, vanishes. There

are therefore two distinct correlation functionctmsider. The first is the analog of the usuaheoted correlation function
G (8), and the second is the disconnected functidrisaspecific for random systems. It measurefidbauations in the local
quenched order parameter

0, (@) = [(Q))(Q(=a))L., — (Q))].. (A=), (13)

and diverges at small asC, o ¢" .

To compute the exponents describing the behavitheoflisconnected correlation function négrwe can write
C.(q9) = G’(¢)D(¢q) [22). Here D(q) is related to a dressed spectral functigf(g) of the RF fluctuations. If
hi(q) o< g™ for ¢¢ > 1, then one obtaing’ (¢) < ¢*"~"* and 7j = 2n — \, . Note that the choice\, =0 yields
7 = 2n, a value which is on the limit of the exact inéifyan < 2n, due to [23]. Another relation was suggested by
consideration of the RF contribution to the freergy in a correlation volume which scalesés In contrast, for the
pure system the characteristic scale of variatibthe effective free energy is simply set by therthal fluctuations,

i.e., «T . On the other hand, if the local order parametas wncorrelated with the RF this would scalef‘12§7/l'.
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Here the factor{'l/Q is coming from the scaling of the total RF. Thiatien for S is easy to find from scaling the dis-
connected correlation function in a real spage= (d—4 + 77)v . Since the correlations could be included by addi-

tional factorfw2 , corresponding ta (¢) oc £ for ¢¢ < 1, we expect thad =2 —n + )\, . The case\, = 0 yields
6 = 2 —n, which is on the limit of another inequality> 2 —n [24]. Thus for the violation of hyperscaling expgoi
we recover the resull =2 +n — 17 [14,17,24,25].

In our one-loop calculations, the critical expongris determined by the coupling(9), and7 = 2n . TheA de-

pendent term appears @(q) only in the two-loop diagrams, as does the ctess b’A. Using the diagrammatic ex-
pansion foD(q) we find

D(g) = K21+ gA(bQ —6A)Ing), (14)

and now the particular valul = (7/3)A(6A —b?) is non-zero to the second orderir 6 —d. All diagrams in (14) must
be disconnected before averaging over the RF loligioin.

The value forn is coming from the diagrams contributing to twdrpaorrelation functiorG(qg). There are three
types of terms in the perturbation expansion. Tret &nd second terms are a double powds’iandA, respectively.
The third term is a double produs?A contribution. In contrast to the disconnected elation function, all diagrams
here are connected before configuration averagioge that not all of them are tree-like diagranssjtas the case for

the O(N) model. Formally we can divide all these contribng and writen = 7, (b*,b") + 1,(A”,b°A) . In the one-loop
approximation,n, = 0 and n, is the critical exponent to linear order4r(9). A straightforward evaluation of the RF
depended diagrams leads to expressior= )\,. This means that for the hyperscaling violatiopaent we get
0=2—mn,.

More generally, in the vicinity of the fixed poipf the random correlation function is proportionattfor smallc.
Therefore, in the critical region one expects th#dte random correlation function will scale as
C.(g,&¢) =c ' e® N0 (e'qe ' €) , where)\, is the scaling exponent of the irrelevant parameteFor ¢ = 0 one has

the behaviorC (0,7) o« 777 with 4 = v(2—n— ). Using the relationy = v(4 —7) that follows from the scaling at
smallgand 7 = 0 we can write\, =7 —n —2. We see thal\, =—6. This result is quite obvious. Really, on the othe
hand, the perturbation expansion for free energydsuble power series i, ¢, and h; . The first terms in this series be-
have likeb*h; and ch, , or for largeh. they both are proportional tg as well. Thus, for the free energy density we have

F(nl,7)=7""f(hoT™*), where is the crossover exponent. If we conclude thas a linear function of its argument for

1/(11—,7/1/)

small 7, as it follows from the perturbation expansiore can getF'(h;, 7) o 7 , henced = o/ The crossover ex-

ponent is related to the scaling of the RF neafixied points h. increases aSXp(&p/l/) . Writing the recursion relation
for h; up to two-loop order, as we have done, Eq.(14)agan findgo/l/ =2—-n+M\ =2-—1,.

All our results for critical exponents suggest thigt 2n , in agreement with the three-exponent scalingupgct
[24,25]. For example, the exponent scaling givesHe ratioC, (0)/02(0) o &, which would diverge unles®; = 7

is valid. However, this divergence is too weak &detected, and thus this ratio may be concernedcasistant, and
the concept of no self-averaging in RF systemsgpeeted [26].

We have considered the effects of a RF (field ogetjel to the order parameter) on an I-N phase tiangising
the £ = 6 —d expansion method. We have found the novel RF fp@idt that proceeds from the existence of two-rele
vant variables in the RG approach, namely, RF aradtig interaction product), and the cubic interactiob, which is
special to a nematic liquid crystal. The first ilwes the effects of the RF, while the latter imasthose of thermal dis-
order. These two agents of disorder give comparaiéributions to the problem. In the pure nematicenh, = 0, the
zero cubic term means that the system is locatad &olated Landau point at the phase diagrans fdint is unstable
with respect td. The interpretation of this instability dependstba existence of a stabig fixed point. As was men-
tioned, this fixed point corresponds to criticaldiuations about the metastable minimun@at 0. When non-zerd,

is switched onA scales aexp(5&(/ 13, near the pure fixed point. Theft is renormalized toward a fixed poipt,

and all critical exponents are changed. As we belithis fixed point governs the critical behawabithe transition from
isotropic to the replica symmetric phase, that @des the replica symmetry breaking phase. Suchdfihgdo step sce-
nario is likely to take place in the Ising spinggdn an external magnetic field [27]. The locatadrihis nontrivial ran-
dom fixed point on a phase diagram is quite clasth¢ fixed point, with zero cubic term (we may call this point a
random isolated Landau point). This indicates thatcritical behavior of the isotropic nematic i B like the behav-
ior of the RF Heisenberg model for the five compurmder parameter. The independent calculatiahetritical ex-
ponents shows that the dimensional reduction inhiyperscaling relations for the RF isotropic nemabtntains the
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shifted valued — 2 — n + 7; instead ofd. The so-called “three exponent scaling” appearthénsecond order ia The

model for studing the replica symmetry breaking$iion from the replica symmetric phase is cleadgessary to per-
form further investigations.

I would like to thank Professor Boris Kochelaev $bimulating my interest in the problem of disoritethe soft
condensed matter systems, and for acquainting mietisé mysterious liquid crystals.
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