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ENSEMBLE SILICON-BASED NMR QUANTUM COMPUTERS

A.A. Kokin, K.A. Valiev
Institute of Physics and Technology of RAS117218ckm, Russia

As an ensemble scheme of solid-state NMR quantunpeters the scheme based on the arrd§Poflonor atoms which
are spaced lengthwise of the strip gates is caesid&he possible planar topology of such ensemqim@tum computer is
suggested. The estimation of the output NMR siignperformed and it is shown that for the nuni¥er 1¢° of ensemble
elements involvind. ~ 1G qubits each, the standard NMR methods are us&blmain mechanisms of decoherence for
low temperature (< 0.1 K), the adiabatic procesgesandom modulation of qubit resonance frequeneterdhined by
secular part of nuclear spin hyperfine interactidth electron magnetic moment of basic atom andléigdipole interaction
with nuclear moments of neighboring impurity atowes considered, Estimations of allowed concentrataf magnetic
impurities and of spin temperature whereby theiredudecoherence suppression are obtained. Sesitaeladecoherence
model of two qubit entangled states is also present
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Introduction

Atomic nuclei with spin quantum numbler 1/2 are tha@atural candidatesor qubits in quantum computers. The early
approach to NMR quantum computers was suggestd®9i [1,2] and then confirmed in experiments [3|4]this
search several diamagnetic organic liquids whodw&itiual molecules, having a number of interactivag-equivalent
nuclear spin-qubits with=1/2 and being nearly independent on one anoth@revbsed. They act in parallel as an
ensemble ofallmost independemjuantum molecule-microcomputers. In so doing thelear spins of an individual
molecule are described by mixed state density rmafrreduced quantum ensemblgitialization of the nuclear spin
states in this case means the transformation oddrsxate into so called, effectivepmeudo-purestate [1,2,4,5].

The access to individual qubits in a liquid samislaeplaced by simultaneous access to related syubigll
molecules of a bulk ensemble. Computers of thie tgre calledbulk-ensembleguantum computers. The liquid-based
guantum computer can operater@m temperatureFor control and measurements of qubit statestdwedard NMR
technique is used.

The principle one-coil scheme of experiment andesowtations are shown in Fig. 1. The sample isgulan the
constant external magnetic fiekRl and in the alternating (say, linearly polarize@)d b(t), produced by RF voltage
vV, (1):

B(t) =B + b(t) = Bk + 2bcos(t + @)i, Q)
wherei andk are unit vectors along the axeandz
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Fig. 1. The principle one-coil scheme of NMR measiemt

Let the sample represent an ensembld wfolecule—microcomputers withqubits each at temperature= 300 K, in
the external magnetic field8=1-10 T. The resonance nuclear spin frequencypi®77~ y;B/277< 150 MHz, y; is
gyromagnetic ratio of nuclear spip & yy = 95.8 radMHz/T)liap /KT < 10°,

The output oscillating voltagé(t) is

V(t) = QKd@(1)/ dt= 1, QKAAM( }/ d, 2)
where <D(t):_"A,quX(t)dydz is magnetic flux produced by resonant spins in dwdl (1 = 477107 T%cn?/d,

Ls = b (KA)*/Vs is solenoid inductance of the resonance contduis volume of the solenoid is the number and is
area of coil turnsQ = R/(a L)>10" is the quality factor of resonance contour for parallel connected mstetR
(Fig. 1). For resonance conditiom= = (L.C) ™2

The maximum nuclear spin read-out magnetizaliigh., (the liquid sample is considered here to be aicoots
medium and to have volum€ ~\,) at optimum resonance conditiois defined by the amplitude of RF field

b=1/(y, /T, T, ) [6] (see also (20) below):
M =M o/ To /T /2=y 1 20ONTV)E(L)/ 2, 3

where Mz, is maximum equilibrium nuclear magnetization, and T, are effective transverse and longitudinal

i
relaxation timesN is number of resonant nuclear spins (one in a cod¢ in volumeV, Parametere(L) is the
maximum probability of the full nuclear polarizatian pseudo-pure state, =1 [7]. It may be estimated by the
difference of equilibrium population between thevést and the highest energy states. For nearly hoahearL-spin
system [7] itis:
_ 2sinhLhw, [ KT)
2" cosh w, /XT)
In the high temperature limiicg/(KT) < 1 we haves(L) = L2 hap/(KT), that is, the signal amplituésponentially dropsith

the number of qubits, butdbes notrop forzia/(kT) > 1 whene(L) = 1 (the pure ground nuclear spin quantum state).
The maximum NMR signal intensiyis defined by amplitude

&(L) (4)
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S=|Voad = (o1 4) QKA N/ \y hw £ 1), (5)
where the produdfA can also be expressed as
KA= (LV,/ 146)"% = (RV,/(y Qu ). (6)
For the root-mean square noise voltage in the meamnt circuit we write
Vi, =JAKTRAV , )

where as a rule the amplifier bandwidthdig /71 Hz.
So forsignal to noise ratiave obtain

1 [phQha, .
(51N =[ ol g ATy N B 002 (Q T, KD ( 3i10” ®

(hereVs in cnt). For example, for two qubit moleculés< 2), with, £(L) = #ap/(2kT) ~ 10°, we can make an estimation
(S/'N) O(Q \V)"? N0, 9)

Thus, to keep the valu&/l) > 1, the number of resonant nuclear spins for ¢ubit liquid ensemble at room
temperatureys ~ 1 cni andQ ~ 1C, is bound to b&\ > 10'°.

In the case oparamagnetic liquidsone would expect that the number of polarizedenunay be increased with
dynamic polarization (say, Overhauser effect). Asag electron and nuclear gyromagnetic ratgr ~ 16 we obtain that in
the probabilitys(L) for aL-qubits single state the valiiep/(kT) in (8) should be replaced by*#xy/(kT). Therefore, for the
same value(L) and number of moleculd$ the allowed number of qubitsapproximately will be estimated from

L2 >10%, (10)

whence it follows thalt < 12 qubits.
An additional increase of read-out NMR signal may dbtained in paramagnetic liquids using the ENDOR
technique. It is generally believed that for thguid bulk-ensemble quantum computerknating valueis L < 20-30

[7].

There are five basic criteria for realization ofagge-scale NMR quantum compuyterhich can outperform all
traditional classical computers [8]:

1. For any physical system, which presents largédesquantum register, the necessary number of gjubit
quantum register must te> 10,

One such example of this register is solid-stat@druclear system in which identical atoms contgninclear
spins are housed at regular intervals in a naturah artificial solid-state structure.

2. There is a need to provide the conditions feparation of initial basic quantum register state.a many-qubit solid-
state NMR quantum computer the quantum registés stéializing can be obtained by goingégtra-low nuclear
spin temperaturé<l mK at fields of order of several Tesla).

3. The decoherence time of qubit stafgshould be at least up to “lmes longer than the ‘clock time’, that is
value of order of several seconds for NMR quantumputers.The decoherence suppression is one of the
important problemdn realization of a large-scale quantum computers.

4. There is a need to perform during a decohermeea set of quantum logic operations determined logic unitary
transformation. This set should contain certainoéihe one-qubit and two-qubit operations witcé siielded from
random errors. The electromagnetic pulses thataldhe quantum operation should be performed aitlaccuracy of
better than 13-10°,

5. There is a need to providecurate and sensitive read-out measurements afubg statesThis is another one
of the important and hard problems.

The design of solid-state NMR quantum computers pvaposed by B. Kane in [9,10]. It was suggesteds® a
semiconductor MOS structure 0A°&i spinless substrate, in a near-surface layerendtable phosphorus isotop&3, acting
as donors, are implanted in the form of a reguiaic These donors have a nuclear bpiri/2 and substitute silicon atoms at
the lattice sites, producing shallow impurity stat€he number of donors or the qubit numbein such a quasi-one-
dimensionahrtificial ‘molecule’ may be arbitrary large. It is suggestedratividual nuclear spin-qubit electrical control and
measurement of qubit states with the use of spgaial structures. The experimental implementatfokame’s scheme is
undertaken now in Australian Centre for Quantum @ater Technology [11,12].

However, there are four essential difficultiesritpiementing this quantum computer:

1. First of all, signal from the spin of an indival atom is very small arfigh sensitive single-spin measurements
are required.

2. ltis required for initialization of nuclear spstates to useery low nuclear spin temperatu(&/mk).

3. ltis required to use regular donors and gatesigement with high precision manometer scale

4. Itis necessary to suppress the quantum datasherenceéefined byfluctuationsof gate voltage.

As an alternative, we proposed the varianafensemble silicon-based quantum complitgri4]. One would
expect that with the ensemble approach, where nmatgpendent ‘molecules’ of Kane’s type work simaéausly, the
measurements would be greatly simplified. Here wiegive some further development of this scheme.
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1. Thesilicon structure with regular system of strip gates

In this case, unlike the structure suggested ind@fesA andJ form a
chain of narrowl, ~ 10 nm) and long strips along which donor ator
at I, distant from each other are placed (Fig. 2). Thisy form a
regular structure of the planar silicon topology type.

The separation between neighboring donor atomsi,iresSin
Kane's scheme, must bkg<20nm. In this case, the interqub
interaction is controlled by gatds The depth of donad is /720 nm.
For I, > |, the exchange spin interaction between electrondoabr
atoms disposed along the strip gatgsaxis) is negligibly small.
Hence, such a system breaks down into an ensemnbleear-
independent Kane's artificial ‘molecule’, whose attenic spins at '. |

temperatureT < 0.1 K are initially fully aligned with the field of I3 L
several Tesla /#B/kT> 1). As in case of liquids, the nuclear spin
states of individual Kane’s chain-‘molecule’ willebdescribed by Fig. 2. The structure of two qubit cells for

density matrix of reduced quantum ensemble. Actesmdividual three-ensemble component

gubits will be replaced by simultaneous accesslated qubits in all ‘molecules’ of ensemble.
The linear qubit density in the artificial ‘moleest is /50 qubits on micrometer. For the realization ofsidared
structure, as well as of the Kane’s schethe,nanotechnologwith resolution of the order @f’1 nm is also needed.
Forthe initializing of all nuclear spin-qubit quantum states (fullygsized nuclear spins) there is a need to attain,
for the time being, nuclear spin temperatdte 10°K. An output signal in this system, as in liquidsill be
proportional to the number of ‘molecules’ or dormdomsN (component number of our ensemble) in the changl
axisy. In the following, the lower value & will be estimated.

2. The states of insulated donor atomsin magnetic fields
The electron-nuclear spin Hamiltonian for a dortone™P has the form

H =y iBS-y,hBl +AlS, (11)

four energy levels of which are given by the walblwn Breit-Rabi formula. For=1/2,S= 1/2 (thez-axis is parallel
to B) this formula is written as

E(F,m.) :—§—thng - (-1 sign(k+ m X)g/ ¥ 2m % X, (12)
where constant of hyperfine interactio®/(2/7) = 116 MHz [15], E(LD)
X = ()6 + f)hBIA= yhBIA> 1,F =1 + 1/2= 1,0, andne =M + m=+1,0, Z(7) { ho,
if F=1 orme=0, if F=0 (HereM=11/2 and m=+1/2 are = E(1L9)
projections of electron and nuclear spins accoigjng he energy level ‘
scheme is shown in Fig. 3. For the energy of tlheigd spin state; = 0 he, .
andmg = 0, hence, we obtain hor . Ve
D
E(0,0)=-A/4- (A/2N 1 X?. (13) l
e —— El 1,-1
For the next, excited energy stafes 1,m: = —1 we have I - (-1
0]
E(L-1)=A/4- (., -y, WB/2. (14) A E(0,0)

Thus, the energy difference between the two lowates of the . o
nuclear spin (the resonant qubit frequency), thaeracts with an  Fig. 3. Energy levels of an individual donor
electron, whose state remains unchanged, is desciibsimple terms atom in magnetic field
(y.>»vy, for X =y hBl A>1):
A K

A
hw, =E(1,-1)-E(0,0)= A/2+ §, - B/2+—v ¥ X =yhB+r—+
L =EQ-D-EQ0)= A/ -y 3812 B X =y B

(15)

ha = EQLD)- E(LOy -y hB+ Do A
" ’ ’ /i 2 4ynB -’

For 3P donor atomsy; = 176.08 radGHz/Ty = 1.134 = 108 radMHz/T ¢/ i = 1.6210°. In magnetic fieldB=1 T:
w, 12m=75MHz, w, /2m= 41MHz.

The frequenciesw, @, «:, ab are in microwavew, — in the RF ranges of frequencies. The transitiith
frequenciesuws in the first approximation arferbidden

The stategF,m.) in M,mbasis are
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L) =]1/2,1/2
|L-1=|-1/2-1/3
|1,0)= (1-a}?|1/2- 1/2+a"?|- 1/2,1/R

(16)
0,0 = (t-a }?|-1/2,1/3-a"?| 1/25 1/

azl[l— X ]=1I(4X2 )<< 1

2 J1+Xx?

The diagonal matrix elements of nuclear magnetimadl, per one donor atom for two lower energy statekbil
determined by

X -
<070|Mz|01():<01q)|z| O'pylhzﬁylh /%Vﬂ}l /2

(1L-UM,|1-3=(1-11,| I Wh=-yh [2.
The probabilities of thé.-qubit lowest and highest energy fully filling statfor the same electron spin state

M = -1/2, which correspond, as noted above, to the maximprobability of the nuclear polarization in psetalire
state, are:

(17)

expLaw, 1 XT)
(exp(iw | KT )+ expthaw), |XT))'
explLaw, 1 XT)
(exp(iwy | KT )+ expthw, 1XT )y

p-(L,-1)=
(18)
p"(0,0)=

The possible maximum nuclear magnetizatid, (the populations of statd4,l) and [1,0) are negligible for
Wy, Wy, W > W) IS

expLhw, 1 XT) _
(expiw;, | XT )+ expthw, 1XT))

M., =yl 20N /vc)[

X : (19)
- (exp@w;e/)(;(;;fa;;;z;;; /XT)) J =nhlZEN e
For Law, / 2kT <1 and X > 1 we obtain (compare with (3))
M, =yl 20N /IV,)(2" L(aw), KT). (20)

But for very low temperaturesig, / 2kT > 1) we have thdull nuclear polarizationM,,, = y,2/2{N /V,) and
g(lL)=1.

3. Thegain effect for NMR signal
Transitions between two lower states are induced BF magnetic field, applied at a resonant frequen;, . The Rabi

resonance frequena®, which is defined by matrix elements of the Hamniian of the spin interaction with the external RF
field b(t)

Hy (1) =0.S, -y Lrb(),  B(Y=2bcogw, } (21)
can be found from
Q =y, (X)=2[(0,q H, (0) 1~} & (22)
For the amplitude of effective RF field, actingrarclear spinb.(X) we obtain
by (X) = b@"*(y,/ y,) + 1-a)"?) (23)

whereb is the amplitude of circularly polarized field cpanent.
The Rabi frequency has the maximum value Xor 0 (o= 1/2) and monotonically reduces to value for the
insulated nuclear spimr= 0), y,b, (X > 1)=y,b. From the rate of quantum operation standpoirg desirable to

operate in relatively weak fields [10], at whigh/y, > X =y 4B/ A>1 or 3.5T> B> 3.910° T.

In this case from (23) we will obtain
by =(1+7)b> b, (24)
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where 7= Al(2y,hB)> 1 is the gain factor Under these conditions, RF field operates throtiyh transverse

component of electronic polarization. For magnéétds B =1 T we have the valugs = 4.4, and forB=0.01 T we
have the valud;= 33&. The gain effect involves an increase of NMR sigimad Rabi frequency. This effect was
indicated previously by K. Valiev in [16].

In the pulse technique, this effect makes it pdsdio decrease the length of pulaed along with it the times of
logic operation performing. Moreover, the computperations, owing to this effect, can be perforraédower RF
fields. At last, it permits toeduce the RF field influena the operation of neighboring semiconductor ck=vi

To describe the nuclear dynamics for the two loingylevel systems being discussets{ 1), we can write the

following Bloch-type equation with only two effeet relaxation times:

dm M,i+M,j (M,-M, )k
M M =By - - M m Mk (25)
dt T, T
wherei, j, k are orthogonal unit vectors (Fig. M, is defined as (19),
B = (w,/y))k + 20, cosgut ) (26)
It follows from it that the value of maximum nuadleaad-out magnetization in NMR signisl, . =M, /T, /T, /2

can be obtained fob,, (X) =1/(y,/T;, T, ). Hence, the read-ot{MR signal cannot be increaséittough the gain effect

over its maximum value, that corresponddAg, /T, /T, /2.

4. The signal to noiseratio for an ensemble silicon quantum computer

For the realization of an ensemble silicon quantegister, we propose a variant of planar schemg [h@t, as an
example, containafy in parallel acting identical blocks, and each klbasN, in parallel connected-qubit Kane’s
linear ‘molecules’. This scheme is schematicallgidied in Fig. 4.

Let the sample be the silicofii) plate of thickness 0.1 cm. For the full numbecomputer-‘molecules’ in ensemble
N =pNyn, the volume of sample and of solenoi¥ys: -1 l,:L-N (the filling factor is assumed for simplicity te bne).

The read-out signal from suemsemble in parallel actinghains, as distinct from liquid prototype, forlfaliclear
polarization or, what is the same, for nuclear spinperature¥, < 10°K has instead of the small factor in intensityhu t
NMR signal of typeg(L) = Z*L-hap/(KT) the factore(L) = 1. The NMR signal from our sample within a ressential
factor is the same as from macroscopic sample [IHgrefore, with the expressions (4) and @)n/(KT) <1
(T: <1 mK) ands =1 we will obtain as an estimation for maximum signanoise ratio

(S/ N) =/ Qi /(KTY) ON10° = [ QN(S ] ] DIL0™, 27)

It is believed that for low temperatur€-~ 1. Taking info account that the effective volumeoog ‘molecule’
for I, = 20 nm,l, =50 nm,L = 1C’, Vs = dl,l,L = 10°cn? we receive that the read-out signal in our schemag be
available for standard NMR techniquié the number of ‘molecules’ in ensemble is obabN > 10°. High-sensitive
devices for measurement of individual spin-statesnat needed.

To estimate the values p let us consider the square plate witiN§D= 20- 10°n andN, = 100. As a result, we
receiven =16 andp =63. The area of the structure without passive regis/7315x 315um?. This size is sufficiently
small for sample to be housed in the gap betweenmmthgnet poles of a standard NMR spectrometer. et may
have considerably more area and correspondingly maomber of ‘molecules\.

For implementation of two-qubit logic operationig required the controlled by gatdsinterqubit indirect
interaction with characteristic frequency~ 100 kHz< ap ~ 100 MHz. To bring about fault-tolerant quantum
computations on large-scale quantum computerselaéive error for single logic operation must bemore than ~10
[17]. Hence it follows that aesolutionbound of the NMR spectrometer must be of the ooflerl00kHz [10°~ 1 Hz,
that is consistent with the usual requirements. $ignificant that
such high precision is needed only for performihg togic

ﬂque?stlljgmgrﬂiratlon but it is not needed for read- ou‘lll lll lll[ ll' lmlll

The read-out signal may be more increased DY MBRAB i iommierccrnioinsios ceoietinamasmsssisaressenn

electron-nuclear double resonance (ENDOR) methd@} §f llll lll lm lll : lm lll

observing the electron resonance at transitionk fritquencies

ap andax (Fig. 3). R S N {eeenes s PN,
Consequently, by the use of standard NMR and axhditiy .

Fig. 4. The scheme of the proposed planar siliapology with
pn parallel connected blocks of the ensemble L-qubit
quantum computers (the connections are not shown
here). The broad and narrow lines denote thendJ
gates
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of ENDOR techniquethe first main difficultyof Kane’s scheme can be overcome.

5. The cooling of nuclear spin system and nuclear stateinitialization by means of dynamic polarization

The electron and nucledongitudinal relaxation timegor the allowed transitions in four energy level system of
phosphorus-doped silicon have been extensivelystigated experimentally in [18, 19]. For the allawgansitions
with frequenciesys and ax (Fig. 3) electron longitudinal relaxation timegg = 7,. were found to be exceedingly long

at low temperatures. They are of the orderoné hourat T=1.25K,B /0.3 T, are independent of phosphorus
concentration belowC ~ 10"cm™ (mean distance between phosphorus atoms is obrier of 45 nm) and are
approximately inversely proportional to the lattieenperaturel. The nuclear longitudinal relaxation time at the

frequencyw, was found to be equal to 10 hours.

The relaxation time for transition with frequenay, which involves a simultaneous electron-nuclean $iip-
flop, atT = 1.25 K,C 010*° cm® andB /0.3 T wast,, 030 hourss 7, 7.

Theextremely long relaxation timed the electron and nuclear spins imply that #wguired initializing of nuclear
guantum states (full nucleaonequilibrium polarizationscan be attained by deep cooling of short duratibonly
nuclear spin systeno T, < 1 mK without deep cooling of the lattice. Therdahe possibility to reach it at thadirect
coolingof nuclear spin system by meangghamic nuclear spin polarization techniqy9].

One such method of dynamic nuclear spin polarizgto donor atoms is based on the saturatiothbymicrowave
pumping of the forbidden transiti¢frequencycs in Fig. 3), that is designated as the Abragasolil state effeds,19].

Let us consider this effect as applied to the ebsewf**P atoms. The polarization of electrds= XS,) and of
nucleiP, = X1,y may be for the sake of simplicity expressed as

Ps = p(L D+ p(,0 p@- 1 p(0,0
R = p(L, )+ p(0,0- p(L,0) p(ly 1
where p(F, m.) are the populations of stathé,mF> (Fig. 3). They also fulfill the requirement
p(1,1) +p(1,0) +p(1,-1) +p(0,0) = 1. (29)
The rate equations for the populations are (is@iened, that the relaxation rates for transitiafseguenciesw;
are equal tl ,):

(28)

dpg?t,o):(p(l,l)_ p(O,O)'B )/T||B+ (p(]_,O)- p (0,0% )f||D+ o (1_' 1_) D (O,Q'/I )‘“A
%’t_l):(p(l,O)_ p(1- 1)y )/T||C + P@Yp @ DWW+ ((O,0f- p (& 1))-{,_\ (30)

dp((:ilt 2. (P, =D = P(LO) e + P (0.0 = p (1LOy 0 @1 p (LG Vs

D = (0,05, - PAV i + (4 7 P ALIN+ ¢ LOK- P L),

where parametersgcpa= exp(-iascpa/KT) are ratios of rates for the up and down thermahsitions. For values
ha, o o IKT>1, hw, /KT <1 (T<0.1K) there are the thermal electrd®, =-1 and nuclearP, = hw, / kKT <1

polarizations.
Let us assume next that the raténofuced forbidden electron transitiofs 1) = |1~ 3 at frequencyw, that isWs

and electron longitudinal relaxation times satisfy conditions:
4 _
W™ <Tjg = [ < T Tipr T s (31)

where7jp, 7js are the longitudinal relaxation times of electspins for the forbidden transition. Hereafter walkWwrite

PO~ b1y /7, + (P~ 1 P(O.ON,

LD - 51,0/, + (PLD- P DIW+ (0,05 P& )T, (32)
PO~ —pw.0)/1, + (PLY- PLONT,

%1{1) =-pA) /1 + (PA- 1= pADIW+ (P(L Oy PAD)Ta-

With equations (28),(29),(31) we can obtain the exjuations foPs andP;:
dR,/ dt=—(R+ R)DW-( R+1)/7; ,

(33)
dR/dt=—(B+ R)DW- P/ J,
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The steady-state saturation conditio, ¢>1/T,,) of the transition1,1) = |1~ 3 gives rise to the equalization of
the populationg(1,1) =p(1,-1) and to théull nuclear spin polarizatiomespectively
R =-R =p0,0)=1. (34)

It is obvious that this state is equivalent to state with nuclear spin temperatie< ap /k ~ 10°K.

Hence, the initialization of nuclear states mayb®ined by using ENDOR technique at the latticeperature of
the order of 0.1 K and by this means tthe second difficultpf Kane’s scheme can be overcome.

Notice here that there is also another possilditgnsemble NMR implementation, which doeg have the gate
system The selectivity of nuclear resonance frequenfaesndividual qubit in the ensemble of Kane’s aisaican be
achieved, rather than using thegate voltage, with the applying of the externalgnetic field gradients along axis
For neighboring qubits separated B0 nm it is requirediB,/dx~ 1 T/cm (that is feasible now), which produce a
resonance frequency differen€4.00 Hz.

6. The decoherence of nuclear spin states dueto the hyperfine interaction of nuclear and electron spins

The relaxation of nonequilibrium state of the naclspin system represented by the product of imdige (nonentangled)
one-qubit states, owing to the interaction withrigaic environment, shows two processes. One Ieva establishment of
equilibrium state associated with dissipation oérgg. For it, the diagonal elements of density ixatiecay with
characteristic longitudinal (spin-lattice) relaratitimeT,. The decay of non-diagonal matrix elements callstbherence of
guantum states is characterized by a decoheremeeTji or transverse (spin-spin) relaxation tiffie The longitudinal
relaxation timesT; in the case of nuclear spin 8P atoms as qubits is defined mainly by thermal ratidn of qubit
resonance frequency accompanied by spin flips.usiial that for solids; < T;.

The internal adiabatic decoherenamechanisms due to a random modulation of qubdnasce frequency are
produced by local fluctuating magnetic fields withaspin flips. These fields are determined by smcyplarts of
interactions of nuclear spins with electron spihthe basic phosphorus atoms, with impurity parametig atoms and
also with nuclear spins of impurity atoms. We haseed this mechanism edernal It seems to be the leading one.

The modulation of nuclear spin resonance frequetwtf), which is determined by the secular part of hfiper
interaction, may be written as

daft) = ADS()- A(S)= A )=( 9-4 Bt 5. (35)

whereA(t) = Ay + 4A(t), 4A(t) is the modulation of hyperfine interaction const#, = 725 rad MHz. The influence of
gate voltage noise on this frequency modulation stadied in [9,10,20] and it is not treated heredrnaldecoherence
process).

Another (internal) modulation mechanismAtf) is the interaction of donor atoms with acoustiomons. It is our
belief that for very low temperature this mechanismot essential [21].

Let us consider now the first term in (35). We Elf@low the semiclassical model afdiabatic decoherence of
one-qubit stat€Appendix). The correlation function of frequenopdulationdea(t) = Ay (S(t) —(S)) is determined by
the fluctuations of electron spin polarization alepends on electron resonance frequesgyongitudinal 7; (hours)
and transverse relaxation times. In adiabatic casg= 4B > 1/1, > 1/1; and we obtain:

(Asext) Awy(0)) = (Acsy) exptt I, ) (36)
where
(4a2)= Ag((gj)—( sj) = A@L-tant ¢ & BI2KT)/4 (37)
Now, according to (62), for decoherence decremenbbtain
I (t) = (4ek)7{ (t/ 1, -1+ exptt /1)), (38)

For 7,=10's and t OT, =1s, 1< <Aw§>rf< (r,/T,)* we have the non-Markovian random process (slow
dampening fluctuations). In this case
r(t) = (Aw§>t2/2 (39)
and the effective decoherence time can by estinfeteuTy ~ (Aw?) ™2

The necessary value of decoherence time for the NjM&htum computer clock time ~16 should not exceed
several seconds. Therefore, let us write the reqént foryiB/KT > 1 in the form

UT? = A(1-tankf ¢,hB /KT ))/ 4 28 exp(y,h B KT¥ 1%, (40)

from which we find that the decoherence suppressidhbe achieved only asufficiently large BT > 30 T/K. It
corresponds t8 = 2 T for lattice temperaturds< 0.06 K.
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7. The adiabatic decoherence of nuclear spin statesdueto interaction with nuclear spins of impurity atoms
The paramagnetic impurity atoms having magnetic eritmplay also a role of environment for nucleansjn solid
state. However decoherence mechanism due to dijmbde interaction of their magnetic moments withclear
spin-qubits is suppressed to a large exteBf Bt 30 T/K thanks to near-full electron spin polatiaa [21].

Another mechanism of one qubit state decoherendéipae-dipole interaction with not fully polarizetliclear
spinsl #0 of impurity diamagnetic atoms having concentra;mp. Isotope®Si with Mimp = =53 rad MHz/T is one of
such atoms. The random fluctuating local field,duced by nuclear spins of impurity atoms has thefo

28,02 =3 0,00 Ly (.0~ (11 1)) (1)
i.B
where
D, (1) = Ho Wiz (Jaﬁ - r'f!"?] (42)

r, is the distance-vector teth impurity nuclear spin.
In this case correlation function of frequency matian

(e (1) 40(0)) = V2 (B DB L0)) = C > Dy ()1, il Dl i )= )15 inff ) e (43)
4

takes the form
(At Acg(0)) = (Aa? ) expt Ty ), (44)

whereT,im,= 10's is impurity nuclear spin longitudinal relaxatitime of isotopeSi at low temperature [18]. Taking
Tyimp to be much more thafy ~ 1s, for the determination of allowable impuktncentration we obtain equation

I,imp%(l— tanf (| mp| B /KT)) (45)

wherea is the minimal distance to impurity nuclear sgind for Si & is of the order of 407cm™.
ForB/T > 30 T/K and for spin temperatufgat which there is near-full polarization of nuglepins

Vi imoBIKT | >1 (46)
imoB1 KT

1T =C

or for T, < 0.8 mK, we obtain that the allowed concentratibthe isotopé°Si is
C, .., %< 4.5010° % (47)
This value can be increased due to the furtheredser of nuclear spin temperatiie For comparison, natural

abundance of isotopSi in natural silicon is 4.7%. At present, the izad degree of cleanirf§Si is 99.98%, which
doesnot fully suitfor our purposes yet.

1,imp

8. Adiabatic decoherence of entangled two qubit states
In the processes of input of information and logmeration performance, some nonentangled initiadiztates of
guantum register become entangled. The adiabatiteps of transverse relaxation may be also the deinherence
mechanism of coherent entangled quantum states.

As a simple example let us consider here the atitadacoherence of the pure fully entangled twoitguiplet

state of EPR-typqx/JEPR| = \/1/2(|T 1|+|1 T|) with the zero projection of the total spin on thaxis, which is described
by density matrix

0 00O
110 1 1 O

Pepr = |wEPR> (40 EPFJ = E 0110 (48)
0 00O

The action of the environment on qubit states bélldescribed quasiclassically as correlated ranmonulation
of the qubit resonance frequenci#s) ,(t) and of indirect spin-spin interaction paramedes(t) = 41,(t)/2. The secular
part of Hamiltonian for interaction with the enuiraent is represented by

H(t) = 4w (t) (o, 01)/2-Aw, ()10 0,,)/ 2+ Aw, t)o, 0 0,,)!2, (49)

whereg, ,, are Pauli matrices.
The density matrix (48) under the action of randietd in the rotating frame with resonance frequerng is
described by expression
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Peor®) = UD)* Pl 1), (50)
In the considered case, the unitary matris 4(t) is (4, ,(t) = _E Aw, dt, ¢ (t) = _[; A dt):

U(t) = (cos@, €)/ 2L +i sin(@, ()/29,, }J (cosl, t()/Ay+i singt ()/2), [

eosg, )LL)+ sing, 1), 0, ) &0
For perturbed density matrix we obtain
0 0 0 0
pn=4° L expti ¢, ()4, () 0 52)
exp( @, ¢)-9,())) 1 0
0 0 0 0

We see that thmodulation of spin-spin interaction has no effestdensity matrix of triplet EPR-state.

Let us assume now that the random phagegt) have mean valuég, ,(t)) =0 and belong to the reduced
statistical ensemble, which is described bytihe-dimensional Gaussian distribution

1 1 (820 _20,08.08.0) , £50
(1),8,(1)) = - _ L) _ 22\ 53
WA(0.0.(0) Znal(t)az(t)\/(l—pfz(t))exp{ 20-05O) L2 0,0)0,0) +az(t)J} 3)

Here
o%,(t) =(7,0) = 2[ - 1)F, (r)dr

are the variances and

(6.06,0)) ) _2[€-DT@)dr

LA RAGEA® &9
where
f2(7) = (dw, (1) 4w, f0)),  f,47)= (4w (1)Aw {0)). (55)
The normalized mutual correlation functipp(t) takes values in intervdl < g, (t) < 1.
After averaging (52) with (53) we have
0 0 0 0
_1 0 1 expE/ €)) O
Perr(t) = 20 exper () 1 ol (56)
0 0 0 0
where
exp(-/ ()= [ dg, [ dp,w@, 4,)expti,~¢,)F expt 6 € Z (¥, (P, (¥’ ()] (57)

In the absence of random field correlatjgi(t) = 0, the decremenf(t) is equal to thsum of decrements of two
one qubit states:

r)=(o;)+o;)/2=2r,0) (58)

In the case of maximum correlatign,(t) = 1 and@(t) = ¢,(t) (the same mode acts on both qubits)iabatic
decoherence disappearBhe singlet EPR state has analogous properties.

We see here that decoherence of interacting cattétssmay differ essentially from one qubit decehee. Under the
action of fully correlated random fields the colmee of two mentioned entangled states is not @dlaind they may be
considered as the basis of decoherence-free gabkirdogical qubits coding. Clearly, the pure fullg entangled states

| = (\/1—0'|T 1|+JE|1 T|) have no such properties.

Adiabatic decoherence of other two-qubit fully emied quantum Bell state|§{/| = \/1/2(|T T|i|l 1|) under the

action of fully correlated random fields witlp(t) =1 now does not disappear. Its decrement eqtmls
() =(o,(t)+0,(t)’/12=207=4r,(t), that isfour times largetthan for one qubit decoherence.

Magnetic Resonance in Solids. Electronic Journal.6/(2004) 129



Ensemble silicon-based nmr quantum computers

Conclusion

1. The development of the large-scale ensemble gMERtum computers has certain advantage over Ksctesne. It
consists in the possibility of employment of thenstard NMR technique for the measurement of quastatas at
output of computer, like in the liquid prototype.

2. Methods of dynamic polarization may be proposaditiie initialization of nuclear spin states at pemature
T /0.1 K.

3. Analysis of proposed planar structure of ensemsbicon computer shows the possibility of redlia of large-
scale NMR quantum computer for ensemble componenbatN ~ 1.

4. The main reasons for the internal decoherencenef qubit states are the modulation of resonantst q
frequency due to hyperfine interaction with fludtng electron spin and due to interaction with @mdy
distributed impurity diamagnetic atoms containinglear spins.

5. Analysis of different feasible ways for obtamidecoherence times large enough shows that thesyateeded to
perform the required number of quantum logic ofemat~ 10 for large-scaled computations, can be achieved.

Appendix
Semiclassical model of adiabatic decoherence of one-qubit state
We will consider a long-living non-equilibrium qulstate when diagonal elements of density matriy bwtreated as
a constant.

The random modulation of resonance frequedajt) that causes the dephasing of a qubit state esrdéted by
the random phase shifts

é(t) = j; Acxt)dlt. (59)
The one-qubit density matrix of pure state in tbeting frame with non-perturbed resonance circfikzguency
will be

p(t)

1{ 1+P, P exp(¢ (t))} (60)

2[Rexptigt) 1P
where P, =R +iP,, B, P, P, are Bloch vector components of lengeh= \/F? + F? + F? =1.

By treating the resonance frequency modulation ags&an random process after averaging (60) ovaseph
distribution with (¢(t)) =0 we obtain

1]  1+P P expt/ ()
(p) _E{R exp-r () 1P } oy
where
1 2
r(t) :§<( J:Aw(t)dt) >: j;(t—T)Mw(T)Aw(O))dT (62)

f(t) :<Aa)(t)Aa)(O)> is the frequency correlation function of a randprocess, which is characterized by variance

<Aa)(0)2> and correlation timer, such that fort > 7, (Aw(t)Aw(O)) = 0. For 7 (t) > 0 the averaged density matrix
presents a mixed quantum state with two non-zeyensitates

1/2[@1;/ - B+ P (- expt 2 (t)))) 63)

and the populations of statgs =1/2(1+ B, (0)) at/ (t) = o.

Thus, the adiabatic decoherence problem is redtedide determination of the functiofi(t) or the correlation
function of random frequency modulation.

In the case of an ensemble quantum register thexeeed to average the one-qubit density matdxcarrelation
function over ensemble of independent equivaleim-gpbits.
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