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New scenario of irreversibility for linear systerhas been found and discussed. This scenario isd barsehe
interpretation of the geometrical/physical mearofthe temporal fractional integral with complexdameal fractional
exponents. It has been shown that imaginary pattieofractional integral related thscrete-scale invariancédSl)
phenomenon and observed only fare regular (discrete) fractals. Numerical experimesitew that the imaginary
part of the complex fractional exponent can be aplproximated by simple and finite combination loé teading
sine/cosine log-periodical functions with period [ is a scaling parameter). In the most cases aralyreleading
Fourier components give a pair of complex conjugja@gponents defining the imaginary part of the clemp
fractional integral. For random fractals, whereanant scaling properties are realized only indtatistical sense the
imaginary part of the complex exponentaigeragedand the result is expressed in the form of theventional
Riemann-Liouville integral. The conditions for reation of reind and recaps elements with complewer-law
exponents have been found. The fractal structuradiig to pure log-periodic oscillations relatedfr@ctional
integration with complex exponent are analyzed.cBipon of relaxation processes by kinetic equagicontaining
complex fractional exponent and their possible gadion in the dielectric spectroscopy is discussed
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1. Introduction

As it is known [1], all equations describing theddic stage of evolution should have clearly exggdsrreversibility
with respect to the temporal variableT his inherent irreversible property should beidst from the basic reversible
equation for density matrix (Liouville equation).hd correct procedure of such deduction is reducedome
decoupling procedure as it is done usually in theriMwanzig formalism [2] or to the procedure oftheduced
description based on the hypothesis of an interatedocal equilibrium. The last hypothesis is tlasib one in the
Zubarev's formalism for nonequilibrium statisticaderator [3]. But these two procedures are ratppraximate and
not well justified.

Now it is becoming clear that faronlinear systems a natural scenario of transition from sl systems to
irreversible ones should use the dynamical chansegtions [4]. For linear systems the well-justfirrect procedure
for creation of &inetic scenaridrom the initial reversible equationsadsent In our opinion, this procedure for wide
class of dynamical systems should include a fosnalof the fractional calculus [5]. As it is well-dwn, the non-
integer fractional operators of differentiation antegration have the property of thartial irreversibility or, in other
words, the property of the 'remnant’ memory considén [6]. So, the problem of correct deductiortlod fractional
integral from usual integer integration operatisappeared.

Recently much attention has been paid to exist@fcsquations containingeal fractional exponent [7-9].
Now it becomes evident that equations with fractioserivatives will play a crucial role in desciignt of kinetic
and transfer phenomena in mesoscale region. Aastalready discussed in paper [10] the frontiersciénce are
rapidly shifting from the investigation of the badiricks of matter to the elucidation of mesoscqamicciples of
its organization. Moving in this way we need a neatfatical apparatus, which adequately correspondsttae
description ofkinetic propertiesof a matter on mesoscale region. From our pointviefv this necessary
mathematical instrument should lie in deep undérgfaof the 'physics' of the fractional calculusher first
attempt to understand the result of averaging sfn@oth function over the given fractal (Cantor) Bas been
undertaken in [7]. In the note [11] and later inppa [12] some doubts were raised to the reliabitfythe
previously obtained result. The criticism expressethese publications forced the author (RRN)doansider the
former result, and the detailed study of this peablshowed that the doubts had some grounds and direretly
linked with the relatively delicate questions ofeaaging a smooth function over fractal sets, intipalar, on
Cantor set and its generalizations. But we canigoéa with final conclusion made in [12]: "no dire&lation
between fractional calculus and the fractals halestablished yet".

In order to dissipate these doubts and realize emagltically correct averaging procedure over frastdb it
was necessary to carry out a special study. Thisstigation has been given in the book [8], whére ¢orrect
averaging procedure was considered in detail. Tinthér generalization for more general Cantor $ets been
realized in papers of Prof. Fu-Yao Ren with co-awsh[13-15]. Another approach leading to the frawél
integral and related to coarse graining time avieiais considered in the recent book [16]. Indeparichnalysis
of above-cited papers could lead to a conclusiat the physical meaning of the fractional integndth real
exponent has been understood. Temporal fractioriagral can be interpreted as a conservation df gfastates
localized on a self-similar (fractal) object if thmhysical system considered has at least two pHridifferent
states. One part is distributé@tside a fractal set (the conserved part of states) adh&r part of states is located
outsideof the fractal set (the lost part of states). Thathy it is easy to understand the fractional gneg of one-
half order, when for its understanding any fraatbject is not necessary. Half of states is losbanatically in
diffusion process with semi-infinite boundary cotigiis [8]. From the geometrical point of view themporal
fractional integral is associated with Cantor seit® generalizations, occupying an intermediatsitpon between
the classical Euclidean point and continuous liBaet the meaning of fractional integral with reahdtional
exponent isnot complete in the light of recent papers [10], [10];2vhere the correct understanding of different
self-similar objects witttomplexfractal dimension is discussed. These interestiegs forced the authors of this
paper to reconsider their previous results obtairied [8] and gave a possibility to understand the
geometrical/physical meaning of mathematical ogeratth complexfractional exponent. So the basic question,
which we are going to consider and discuss in tmper, can be formulated as followsow to come to
understanding of fractional integral with compleadtional exponent through the correct averaginggedure of
a smooth function over the temporal fractal sét2 are going to show that details of averagingcpdure
developed in [8] will help us to find the answerrfaulated in the title of this paper.

The following content of this article obeys the inettucture. In the Section 2 we present the bastails of the
averaging procedure including some new generaizstiwhich are absolutely necessary for furtheerstanding. In Section
3 following to the basic ideas of the scale-invac& objects with complex fractal dimension we fystihe
geometrical/physical meaning of imaginary parthef tomplex fractional exponent. In this sectionrémilts of numerical
calculations are also given. They are importanhiterstanding of the imaginary part of the comfiastional exponent. We
found also geometrical structures leading to aefpiractional integration containingnly an imaginary part of the complex
exponent. This investigation (considered in Secfiphelps to introduce passive two-pole elementls @@mplexfractional
exponent, realizing the fractional integrationfiéntiation operation in time domain. The last i8act includes also a brief
consideration of kinetic equations containing cargtactional exponent. The basic results are celteand discussed in the
final Section 5.
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2. Procedur e of averaging of a smooth function over the given fractal set
2.1. Binary Cantor set and the temporal fractioniattegral
Let us suppose that a physical val(ig is related with a smooth functidft) by means of convolution operation

t
J(H) = K@)* f(Y = jK(t—r) f(7)dr
0 , (1)
where the functiorK(t) is determined on the segmentTDand can be expressed by using of the conventisteal
function

K(t) :%[K(t) -kt —T)] . (2)
Here
1t>0
K(t) = {Qt <o 3

is the conventional Heaviside unit function. Thagtant 1T in (2) appears as the result of the normalizatiball states
covered by the functioi(t) to the unit value

T_.'K(t)dt =1. (4)
0
Laplace-image oK(t) with the use of retardation theorem
f(t-a) = exp-pa) f (p), (5)
takes the form
KO =ZK(p) = [K()exp(-pryde=—=EEED). ©
0

LT
Here and below the symbat means that the left and right side functions are related toather by the conventional
Laplace transform.

In order to find the kerneKT(’fV’ (t) on theNth stage of the Cantor binary set construction, haviagidl dimension

v=1In2/In(1£) and concentrated on the intervalT[]),it is necessary to write the recurrence relation directlytfer
kernel KT(’}) (t) which coincides with the normalized density of bieary set

KEYE® = 5[ KE ) +KE e -0-am)]. ™

Here Kif’j(t) =K(t) defined by (2). The height of each Cantor ‘stripe’ theNth stage is equaled to 142T and
provides the conservation of normalization to thé an each stage of its construction.

In recurrence relation (7) and below the paramétsithe scaling factor, which shows the ‘degreearfipressing’
(é< 1) of binary set on each stage of its constonctThe values of lie in the interval [0,1/2]. Now we are ready to
find the answer for the following concrete question

What is the result of the convolution of the fumeti(t) with the normalized densityT("“V) (t) inthe limit N> o, i.e
I =1im 3,9 =lim (K9 01(Y) = (Kr.(9 DT(D)? )

Here and belowK; ,(t) is the limiting value ofKT"fV) (t). For further investigations of the last expressiBhit is
convenient to use the Laplace transform of theﬁuncKT"fV) (t). From recurrence relationship (7) we obtain

K (P) = S[L+exp( PT (1= MK (p). ©
Repeating this proceduletime, we have
K ()= K (p) = %QN [pTa-&)]. (10)
where
Q@=2"] @+ et 7)) (1)
with z=pT(1 - &.
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So, the Laplace-image df(p) accepts the form

I =KD (D 12)
For the large values &f (N> 1) and Ra§T&Y) < 1 we have in the limiN — oo
J(P=Q[ pT-&)] f(p=K,(P f P (13)

Here Q[pT(1 - §)] is the limiting value of the product (11). Shetlimiting value of the integral kerné{; ,(p) is
reduced to the investigation of the limiting vabfehe product (11).

2.2. Generalization for an arbitrary self-similar procss
The last result (13) allows in generalizing of poes calculations for any self-similar process. @aa notice that

result (10) fork{")(t) atN> 1 can be written in the form
K (t) = A/ T)0A/ ET)OL.OA/EN T T)OK(t/ENT). (14)
Here

809 = 5[50+ S(x- (1= )]
(15)

N 1 N N ,
K(t/é& T)ZEN—T[K(t/E T)-k((t/& T)—1)]

The analysis of formulae (14) and (15) prompts aidnsider more general expressions for an arpitna@mory
functionK™(t) figuring in (14). Let us consider more generaureencee relationship

K™ (t) = B,,0(a,,H) OKN (). (16)
Hereg(t) is an arbitrary function, 4.1}, { 8.1} (i=1,2,...N,...) are sets of the constants. Applythg Laplace transform

to the last expression we have
) N-1
K = . 17
(p) = |'! a [anj 17)

We took into account the relationship

g(an = T g(ap) p) (18)
a
and initial condition
KO(t) = B,9(act)- 19)
Relatively to product (17) we are makitvgo suppositions
S1. We put
1
a, =p =—, 20
W =B, T (20)
and write product (17) in the form
) N-1 N-1 N-1
K™ (2) = oAz =[1dZ]¢&". (21)
AL &E =00

Here we took into account the relationship (20) exignded the product also foegativevalues ofn.
S2. We suppose that Laplace-imagey() has the following decompositions
forRe@ <« 1

§(2=1+cz+ g 2+..., (22)
for Re@ > 1
§=gr 2+ (23)
z z

Mathematical calculations realized in [8] show that
(A) There is a limit oK™(2)

7 (n@)
z

I|m KM(2=K,/(2= (24a)

where
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_In(@)
= (@’ (24b)
andrz[In(2)] is a periodical function with the period ofdn
7, (IN(2)+Iné) =1, (In(3). (25)
(B) The averaged value of the functiggiin(pT)] over the period l&is defined by expression
1/2
C(v) =(m,(In(2)) = IITV(In(z)+ Ané) o, (26)
where the value of the const&(t) can be evaluated and equals
_1-g (u)
Cv) = d 27
V) nwig)® L (6)I ”ﬁ ”} @D
(C) In the limitN — o« one can obtain
C(V) —v C(V) ! v
J(t) = (K (t))Df(t) = D [ f(t )] Trw) 6"(t r) f(r)dr (28)
the desired relation with the fractional Riemanotbiille integral
v o) (YT
o= oo goeris) @
In the partial case
., _l+exptz)
a(2) e (30)

for the binary Cantor set considered in the previgection the calculations give

1 exp( ( 2) 'an |

2 = ()

The basic result of this section (24) can be easiigderstood if we notice the fulfilment of the lftaking
relationship, which igxactfor anyfinite N

(31)

g:

K (e2) =30 vy 32)
9(Z™)
Taking into account the conditions (23) in the tiMdi » o relationship (32) for the fixell is reduced to the scaling
functional equation of the type

K(EZ)——K(Z), (33)

having the solution (24) for any sequencg § &...& ...} distributed on anyountableset. If the sequencef is
continuoughen we immediately restore the previous resilekpressed by formulae (28) and (29).

3. Thefractional integral with complex exponent

3.1. Consideration of the Cantor set with M barsn©mode approximation

The principal result (24) obtained in the previsestion for wide class of function§(z) with a variablez, which can
accept real or complex values, helps to understaadmeaning of fractional integral with tloemplexexponent.
Following to ideas developed in [16] the perioditaiction with unit period can be expanded into itifenite Fourier
series

In(z) = In(2
——|=>C Zmi—— 34
n(ina]= 5 con 2m2 ). @4
Taking into account the definition (24b) ferand the last expression one can present expre&idpim the form
< 1 In(z) & .
K, (2= Gexp|In= 5 + 21v7i nd |- =Y G exp(-v+R,) Ing). (35)

Here the real exponemtis defined by expression (2416),, = 2m/Iné is a set of frequencies providing a periodicity

with Iné of product (24a). Let usupposehat this infinite series can be replaced apprexaty by three terms
170 Magnetic Resonance in Solids. Electronic Journal.6/(2004)
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K,(20z"(G+ Aexp(i<Q>In 2+ A expt KQ> In2)
=27 (G +[Alcosk Q> Inz-y )= G2+ AL+ Ap

Here Q> is the averaged frequency referring to the legadgrm with an averaged value nfand the complex
amplitude A, = OA,Cexp(¢). These parameters determine the contributiorhefléading term in the corresponding
series (35). The value®> is defined as

(36)

<Q>=— (37)

For verification of expression (36) one can usedlyen-coordinates (ECs) method and consider thes&,,
OA.0, <Q> andy as a set of the fitting parameters. As an infii@iduct one can take Laplace expressiorMdCantor

bars obtained in [8]
1 1- exp{— I\/IZ,\flj
(38)

(=7 =<
Ml—exp{— 2 )
M -1

In particular casé/l = 2 this generalized expression coincides with .(3®e basic principles of the ECs method have
been considered in papers [21-25]. So, it is noessary to repeat here the basic ideas. Here wgvamg only the ECs
for the function

Y(2= G +| Alcosc Q> In(2-¢), K (9= Z ¥} (39)
In accordance with the ideology of the ECs methgpre&ssion (39) initially including some nonlineattifg
parameters((Q),gl/) can be transformed identically into the basiedinrelationship

Y(X¥=GX(3+ G X( ¥+ G X x (40)
Here
Y(X¥=y<..>

Xl(X):]'(x—u))(l)du-<__>, Q:—<Q>2,
XO ’ (41)
X,(X) = ¥-<...>, (_‘2:<Q—ZCO,

X3(X) = x-<...>, (:3:(<Q>2 Gx+ Y( >6))

is a linear combination of some functions dependingthe variablex = In(z). Relationship (40) helps to find two

important fitting parameter€, and <€Q>. Other two parameterSA,Cand Q) are found from another basic linear
relationship

U(X) = Acosk Q> x)+ A sinkQ > x), (42)
where
U =y(X0-G, A=|Alcosy, A=| A siny. (43)
So, with the help of last expressions one canyvarifmerically the supposition (36) and calculateribcessary values
of the fitting parameter§,, <Q>, A, Cand ¢.
Numerical calculations are realized by means ofdhewing procedure:
1. Calculation of the functiog(x) in accordance with definition (39).
2. Calculation of the fitting constan€ (k=1,2,3) in accordance with linear relationship (B9)thelinear least-
square methodLLSM). They should present a set of sloping liffesupposition (36) is correct. The sloping
linesC; andC, for M = 2 are shown in Fig.1

3. Calculation the necessary set of the fitting patareeC,, <Q>, UA[], ¢). The final verification of expressions (37).
This final stage is presented by Figs. 2 and Jsely.
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Fig.1. (a) Plot for the constant {Talculated for number of bars M = 2. The slopingelindicates that the corresponding hypothesis for
y(x) presented by (37) is correct. The tangent@fstoping line equals —5.85971B) Plot for the constant ££alculated for M = 2.
Again the sloping line indicates that the correging hypothesis for y(x) presented by expressighigorrect. The tangent of the

sloping line equals 1.88859.
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Fig.2. (@) Oscillating part of y(x) shown by open points d@sdit (shown by solid lines) calculated with thelp of the ECs method
for M = 2. The values of the fitting parameters amdlected in Table I(b) Oscillating part of y(x) shown by open points and
its fit (shown by solid lines) calculated by thesE@ethod for M = 7. The values of the fitting pastens are collected in

Table I.
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Fig.3. Calculated values of the product correspodio the functlion defined by expression (36) féieknt values of bars, which
are defined by parameter M. Their fitting curvesresponding to function (37) are shown by soliceinThe values of the

fitting parameters are collected in

Table I.

The values of the fitting parameters for variddsand  are collected in Table |I. These numerical calombest
prove that supposition (36) is correct and phykicadflects the trualiscretestructure of the fractal considered. It is
interesting to note from analysis of the paramegersn in Table | that the basic contribution tgagximate expression
(36) comes from the first Fourier componentsX<€11). Other parameters exhibit a monotonic behawitr respect to

number of bar$/. See, for example, Figs. 4a and 4b.

Table I. The basic initial (the first 3 rows) and the fitjipparameters (rest rows) obtained in the resulhofmerical

verification of expressions (37)

172

M| & v Co A A Q Y <n> | Stdev
2[0.125] 0.3338 0.63 | 0.0082] -0.00153.01161] -0.1748] 0.9967 | 9.5E-6
5| 0.05 | 0.53720.6117 0.0217| 0.028| 2.091440.9068| 0.9972] 6.1E{4
7]0.0357] 0.584[ 0.6106 0.0252| 0.0404 1.8858 1.0137 1.00p0 8.3E-4
10] 0.025] 0.624] 0.609 0.0293 0.0583 1.7045 1.04874001| 1.3E-3
13]0.01920.64920.6074 0.0382| 0.0621] 1.5911 1.08429.1011[ 1.7E-3
15]0.01670.6614 0.606| 0.0353 0.0661 1.5331 1.08(7@.9991| 2.1E-3
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Based on Laplace image (39) it is easy to come lradkme-domain generalizing the value of the fiawaal
Riemann-Liouville integral for complex values oétfractional exponent. Using relationship [26]

et

r@ =p“, (44)

one can present expression (36) in the form

v-1 v+i<Q>-1 v-i<Q>-1
t t ot

r) A F(v+iQ) *A rv-iQ)’

3.0
. (b) /.
254 —A— PS' 0.06 4 L 4
— 0.05 -]
I
A— -

A /

T T T

2 4 6

(45)

K, (1) =G,

—
—
0.04

— 0

204
A <

Qy

0.5+

0.0+

-0.5

8 10 12 14 16 0 é 4 6 8 10 1‘2 14 16
M M
Fig.4. (a) Dependence of the basic fitting parameters agdireshumber of bars (M) is monotonic. Here we sth@sfunctiong2(M) and
¢AM). (b) Dependence of the basic fitting parameteys AA/cos() and A = /A/sin(y) against the number of bars (M) exhibits
again a monotonic dependence. Other parametersalierted in Table I.

0

It is easy to note that the first term in the laspression represents itself the evaluation ofkdmmel K, (t) in the
continual approximation, other two terms reflect the diserstale invariance phenomenon existing for true
discrete fractals. The averaging procedure (seeesgn (26)) developed in the book [2] leads tmaalues for
the two last terms and effect of a “fractal digatiion” is disappearing. So, coming back to objetdiexpressed in
papers of R. Rutman [11,12] one can say that ihjtthis effect was not noticed and a “naive” atfgnto replace
a discrete product (17) by its continuous analog ba considered aspproximate The correct replacement
requires the additional averaging procedure (26tansideration of the fractal periodical effect,igfhin the
simplest form can be expressed by two additionmahsefiguring in expression (45).

So, one can prove that the difference between maridiztal, which accept any value of a scale frbengiven interval
(0,T) and discrete fractal that accept ordyintableset of scales leads to phenomenon of discrete issakiance [4,17-20]. This
phenomenon is expressed in the form of log-pe@bdimctions with period depending on the scaliagymeter 14. The eigen-
coordinates method helps to identify the funci@h (39) and find the necessary fitting paramefarsQ>, DA Cand ¢

Attentive analysis of exact relationship (32) helpsfind self-similar structures leading in timerdain to the
complex fractional integral. Let us consider thdiide sums of the following type appearing in aging of a physical
value over a discrete fractal structure [8]

N-1

S(2= 2 Bz, (46)

n=-N+1
Here and below the variabtecan accept any real or complex value. This sunaffgrfiniteN has the following scaling
property

S(B=1 S+ B (8)- ¥ (&™), (47)

If the functionf(2) is chosen in a way that contribution of the tasi terms in the limilN — o« becomes negligible then
we obtain again the scaling equation of the tyf3 {@th solution

g(gz):%g”, 5);@, (48)

where 7£In(2)) again is a log-periodical function, satisfyirg ¢ondition (25),v = In(b)/In(§). Solutions of the scaling
equations of more general type obtained by vanatid arbitrary constants are considered in the KEiatktical
Appendix. Forg,b==1 in Eqgns. (33), (48y = 0 and one can expect ‘pure’ log-periodical datdns. For verification
of these suppositions we chose two functions.

For the product (32) the probe function has a form

9(z") =1-2cos(z" )expt 2" , (49a)

which for 0 <€ < 0.5 provides the boundary conditiaggé™) 0-1,g(zE"") O1.
For the sum (46) with = 1 the function has the form
Magnetic Resonance in Solids. Electronic Journal.6/(2004) 173
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always exist for one of the negative valugz"), o #~
1(In(2))
Zz

K(2) =

v

Fig.5. (8 Numerical verification of the function (49a). Hewe reproduce

the product (32) calculated fd= 0.1, 0.15 and 0.5. The parameters
of the fitting function defined by expression @®@)given in Table II.
The range of variable z is located in the inteif@al =10000]. The

function

(25)

at v=0

satisfies

to

condition:

7,(In(2) £ In &) = -7, (In(2)) - (b) Numerical verification of the
function (49b). Here we reproduce the calculatddesof sum (46)
for £=0.1, 0.15 and 0.35. The parameters of the fandefined by
(36) are given in Table Il. The range of variables focated in the
same interval [0.2-10000]

f(28") =[1-cos" )] expt 2"

which for the same interval of the scaling paramete
0 <£< 0.5 provides zero boundary conditiofigé™) 00,
f(zéN*) 00. The set of Figs. 5 depict the desired

(49b)

oscillations obtained for ‘pure’ complex’ case with= 0.
The parameters of the fitting function (39) for sowalues

of £are given in Table II. Finishing this section aren say
that possible complex solution of the scaling eguma{33)

N+1

» 71(In(2) £In(£)) = —72(In( 2)

). For this case we have the solution

(50)

with v =In@@/g)/In@@/¢&). So, decomposition of the log-periodic function fbis case into the Fourier series should
contain only odd components

(b)

S.(2 :g[qﬁ( )" REs(H).

(51)

Table Il. The calculated fitting parameters obtained for pratd(32) with function (49a) (the first nine rowsked bold) and
sum (46) with function (49b) (the last eight rows).

3 Co Ao Ay Q P <n> Stdev

0.1 [-0.24E-4 [0.486081 |0.414370 [1.361998 |0.705923 [0.499128 |0.00964
0.15/3.927E-5 [0.410544 |0.258893 [1.653635 |0.5626226 |0.499293 |0.005364
0.2 |-1.3E-5 [0.33813 [0.13424 [1.94831 |0.377924 [0.499059 |0.0038366
0.25/6.88E-5 [0.27102  |0.046309 [2.26341 |0.1692346 |0.499389 [0.003052
0.3 |2.163E-6 [-0.203831 |0.017272 [2.599207 |0.08453686 | 0.49805546 | 0.003325
0.35|-7.62E-7 | -0.1404406 | 0.0481402 [2.97784 |0.330228 |0.4975498 |0.0031357
0.4 |1.948E-8 [0.0820374 |-0.057847 [3.406445 |0.6141585 |0.4967693 |0.0031405
0.45|-1.63E-7__[0.03623903 | -0.0530627 [ 3.901106 | 0.971607 [0.495778 | 0.0033237
0.5 [2.288E-8 [-0.006377 |0.0374794 |4.481137 |1.402258 [0.4943492 |0.0029298
0.1 [ 0.150513 | 0.0284258 0.0630613 2.72034114731 [ 0.996917 | 0.0023746
0.15/0.1826834 | -0.003194p0.051340 | 3.29363 | 1.50865 | 0.994466  0.0015673
0.2 [ 0.21534 [ -0.020898 0.0292423 3.871489 -0.95030301682 | 0.001787
0.25[0.25 -0.02277970.0068779| 4.48081240.2932225 0.9886267 | 0.0017665
0.3 [ 0.287858 | -0.01308350.00704825.14125230.4941338] 0.985158 | 0.0017137
0.35/0.33012601-0.0011869 -0.0082609 5.867455 | 1.428099 | 0.9803601 0.0014[721
0.4 | 0.378235 | 0.0033914 -0.002246 6.6804@285039 | 0.9742176 0.001067
0.45/0.434027 [ 0.0010721 0.0010717 7.602291585196 | 0.9661482 0.0006704

3.2 Some generalizations
Let us consider the sum or the product of the falhg type

S (2=Y[6(n]” R E( M)
K™(2) =[] o( #(n°)-

It is supposed that the values of the discretealséein is located in the interval, which keeps the reslligs of the
function ¢(n). These expressions can be transformed to theafivly forms

174

S.(2 :g[m 0" Rig(N") =

%

K=—(N-1)

b k&),

(52a)
(52b)

(53a)
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N

7 79 (53b)

K==(N-1)

KM@ =[] o #(1°)=

Hereb = exp(), £ = exp@), K = In[¢(n)]. If the initial values oh are chosen in such a way that discrete valu&saré
located in the interval [N + 1<K <N-1] then the mapping(n) = expK) keepsinvariant all properties proved
initially for product (32) and finite sum (46). Sone can say that fractional integral with realcomplex exponent
exists not only for genuine fractal structures. Tappingg(n) = expK) considerably increases the results obtained for
new type of structures, which can be reduced tofrdoetal ones on mesoscale region. It has a sendefine these
structures aguasi-fractalsstructures. In particular, in chapter 8 of the lof] we consider the model of coordination
spheres, when = ¢(n). As numerical verifications show the dependerdes Nyn® andR, = R, n® approximate very
well the number of particlell, and their radiuseR, as a function of a number of the current coordbmaspheren
(n=0,1,2,...). The model of coordination sphereslma@pplied for calculation of number of particles\fide number
of heterogeneous substances including clustersiftdreht nature. No needless to say that similaasiyractal
structures leading also to the fractional integoél the Riemann-Liouville type are needed in mordaited
investigations as new potential objects figuringriesoscale region.

4. Recap and reind elements with complex exponents

4.1. Possibility of existence of reind and recap elengenwith complex exponents

In our book [8] it has been proved that self-sim&ructures combined fromR (resistance)C (capacitance) ant
(inductance) elements form passive two-poles, whieh defined agecap (resistance +capacitance) andeind
(resistance -inductance) elements. Their impedances are exprassid form

Z,(jo) =R(jw)” (0sv<1)
Z,(jo) =R(jw) O<v<1)

The first expression defines the complex impedafaecap; the second one belongs to reind elemdinanalytical
evaluations, which lead to expressions (54) weréopaed in the continual limit [8]. One can expé#uat calculations
realized for true discrete structures will contimig-periodic functions, reflecting discrete scaleariance phenomenon.
In fact, these log-periodic functions are contaidefinitely as solutions of the scaling equation

D(z$) = (32, (55)
if parametersh and & form independent countable sets [8]. For othectéastructures, which are not satisfied to
functional equation (55) the existence of log-péidasolutions needs in a special investigation. <ier, for example,

the chain of two elements: resistarRend capacitancg = R/(jwré") (r=RC, < 1) connectedn series The total
admittance of these elementhl - 1 <n <N - 1) connecteth parallel is expressed in the form [2]

Yo(2=1(1-5.(3). (56a)
R

If these two element® andZ = R/(jwré™ (r=RC, z=jwr) are connecteth parallel, then the total impedance of these
elements connectad seriesis expressed in the form

(54)

Z,()= RS ( 1 (56b)
For ‘extraction’ of log-periodic solutions we codsr the sum
N-1 1
(2= —_—, (57)
SN n:—(ZN—1)1+ Z(,t

figuring in both expressions (56). According to egsion (47) we have the following scaling equatibri(z&™) 01,
f(z&") 00)

S(#Z)= & p+1. (58)
Solution of this equation (see Mathematical Appenctn be written in the form
In(2)
S(Y=mn(In( 3)+——=. 59
(9 =m(In(3) né (59)

Figs. 6a and 6b show the results of numericalieatibn of solution (59). In Fig. 6a we depict #iation, when possible
oscillations are completelyiddenand suppressed totally by the second tergyim(¢). After subtraction of the second term in
(59) possible oscillations evoked by discrete gistaucture become visible. OscillatioB2) — In(2)/In(¢) shown on Fig. 6b are
described well by the fitting function

m(In(2)) = G + Gexp(i< Q > In(2)+ G expt i< Q> In(2))
__27m<n> : (60)
In@/¢&)
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with the following values of the fitting parametefs= 0.1, Co=34.5, C; = Aiexp(¢) (A;=-3.19382E-5,(/=1.53985,
<n>=0.996368, > =2.71884). The standard deviation of the absdiifference between the left and the right pafits o
expression (60) equals Stdev = 1.45291E-5.

36 o n(inz)
R o fitting function (60)

34.5010 [\ N g

34.5005 - /‘ | / b b9 4\ ]

34,5000 o 1 1

n(ln(zj))

34.4995 4 “\ / Lol ¢ /(’ \ '} Lo
| s /

| |
O S G N AR
34.4990 4 \v/ \// \/ ‘\j \/

30 T T T

ani

Fig.6. (@) The calculated sum defined by expression (59)y(gwints) and the fitting function (solid line) iefdd by expression
y(2) =In(z)/In€) + B (£{=0.1, B =34.5115). In this presentation a polesitiscrete structure is completely hidden. In ordesee
possible oscillations it is necessary to analyeedifference expressed by (6@). The log-periodic function and its fitting (expriess
(60)) obtained by the ECs method. The fitting patans calculated fof = 0.1 are given in the text.

In more general cases fdiscreteself-similar structures one can write the followigeneralization of expressions
(54)

z,(j&) = R[(jw) " +C(jw) """ +C"(jw) " | (0=v <) o
z,(ja) = R[ (i) +C(jw) " +C"(jo) " | (0=v <)

HereR is a dimension valueC is a dimensionless complex constant of the ordlamdy, Q is a leading frequency
defined by expression (60). The structure of exgoes (61), when terms containing complex expondéoits a
complex-conjugatepair follows from general expression (34).

The existence of the generalized expressions ($1gonfirmed by numerical calculations but it wolléd
interesting to discover this behavior in real ekpental situations analyzing impedances/admittarfceguency
behavior of various heterogeneous structures.

4.2. ‘Strange’ fractal kinetics

A strong evidence has been presented earlier 8pfhat the generalized kinetic equations comtgirfiactional derivatives
and integrals describe well raw dielectric spectspg (DS) data, which, in turn, are related to maeasents of complex
permittivity in frequency domain. For this aim tgecial recognition procedure has been developediudes a presentation
of DS data in the so-calledtio format. The speciaeparationprocedure helps to identify the number of relaxafirocesses
and determines at least qualitatively the possiiacture of fractional equation describing theaxation of the total
polarization in time-domain. Experimental DS data described very well by complex permittivity ftioas, which
correspond to new identified kinetic equations iittttal derivatives in time-domain. Adasicresult, which follows from
this new approach one can obtain a new interpoatafithe empirical Vogel-Fulcher-Tamman (VFT) dipratogether with
its possible corrections [27]. This equation takerthe conventional and generalized forms descrthestemperature
dependence of low-frequency loss peak for widesatdsheterogeneous materials. These papers caonk&lered as an
essential argument that "fractal" kinetics realtises in nature. These identified and recognizeeti¢ equations have the
following forms

(72D + 752D ) (P(1) - P(t,)) + P() =0,
(mDg #1370 (PO~ P(W) + PLY =O0.

HereP(t) is a value of the total polarization,, are characteristic relaxation timeg, are fractional exponents located
presumably in the interval [0,1]. It is interestitggmark that the second equation in (47) contaitisear combination
of fractional integral operations, but this combination taken in invedegree gives again specific fractional
derivative The stationary solutions of these equations tedte following expressions for complex suscefitibi

(62)

(jw)=e,+— D76
1+(ja)r1)1+(ja)r2)2
. (63)
(i) =¢, + Oe.

-1"

L] (jeor) ™ + (jr,) ™ |
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These expressions help to give a new interpretatfothe VFT equation. This statement is confirmgdirndependent
verification of randomly taken (from various intational dielectric laboratories) raw DS data mesassuior complex
permittivity.

These identified kinetic equations can be easilyegalized. More general form of kinetic equationickhcan be
considered as a potential candidate for descriptioDS complex permittivity data in wide class aftérogeneous
materials can be written in the form

> (7D ) (P(t) - P(t,)) + P() =0- (64)
k=1

In partial casesn=1, v=1 andn=1, v#£1) the last kinetic equation for the total polafian P(t) coincides
correspondingly with the known kinetics of the Delkyand Cole-Cole's type. The physical meanindheflast kinetic
equation is the following. We suppose that allxai@mn system including a set of strongly correlateicrodipoles can be
divided onn subsystems. It might be a set of dipole clusteeneemble of strongly correlated molecules. Eablsystem is
interacting with thermostat with the help of catligrotation mechanism, which is expressed by mezngactional
derivative. Each subsystdntk = 1,2,...n) is characterized by own characteristic relaxaiioe 7, showing the contribution
of the chosen relaxation unit into the general ggemf relaxation. The number of subsystems, gamgdditive contribution
to the general picture of relaxation, is definedabstructure of the concrete heterogeneous materigidered. At an initial
stage the kinetic equation (64) can be considesedraasonable apthenomenologicdlypothesis, which is recognized from
correct treatment of DS data. After identificatmithis type of kinetic equation on a wide clasheferogeneous materials
the further theoretical attempts should be undertak explanation of themicroscopicorigin. Probably, it will require the
generalization of the Liouville equation for depsiatrix and introduction of new ideas relatedrteviersibility of time. At
the present stage we suppose that this equatioriiieg the relaxation of the total polarizatioraitoulk material can serve a
basis of signal processing in the modern dielespactroscopy.

Now it becomes cledrowto generalize the identified kinetic equation lué type (62) for theomplexfractional
exponents and clarify their physical meaning. Lesupposehat discrete scale structure in the heterogenewisrial
considered is conserved. The reasons of consenvafia discrete structure in some concrete matagall a special
consideration. If some materials exhibit the ditzicale invariant (DSI) property then it is necessa replace a real
fractional exponent by the triad of the followingeé

TEk D;k = r:k Dt:k +Crﬁk+ijD;k+jQ k4 CDZ-‘; ciQ le;J ciQ K (65)

The last two terms in (65) reflect the influenceaopossible DSI property of a self-similar structim® the general
process of relaxatio®hysicallythis replacement can be interpreted as relaxatiooess taking place on a discrete log-
periodical structure with a basic mod@>and having the stateswhich are kept on this structure. For randomtéiac
the effect of log-periodicity is lost and only thesal part of the total complex exponent is consgr@», one can see the
close relationship between geometrical (structumal) physical (relaxation) properties taking placelog-periodical
self-similar structures. The most fascinating thivigch follows from this generalization is the picttbn of a ‘strange’
(unusual) kinetics, when the complex exponents@caeveak dependence on time. The contributionnef @omplex
exponent coming from a genuine discrete structuiethe general picture of relaxation can be prteseim the form

(rv(t) DY) + /01RO pYOTIAN 4 Copr7inn) Q:(r)—jnc))( P() - F(1)) +
+P(t)=0 '

The kinetic equations of the type (64) and (66hwibssible inclusion and evolution in time of coepfractional
exponents (if their existence will be definitelyoped in the nearest future) can require a deemeéderation of the
basics of the modern nonequilibrium statistical haagécs. We suppose that understanding of the pdiysieaning of
complex fractional exponent opens new directiortsomdy for dielectric spectroscopy, where the cgpanding kinetic
equations containing fractional integral/derivasivieave been identified. It will give a stimulus father branches of
physics and chemistry of heterogeneous materiaterevthe discovery of fractional kinetics with amglue of
derivative (including the complex exponents) iff gtaiting its proper time.

(66)

5. Results and discussion

Based on the scale invariance property, which et fractals with clearly expressed discretecitne, it becomes
possible to understand the geometrical/physicalningaof the fractional derivatives and integralshwcomplex
fractional exponents. The true form of this comp#tsucture, which can enter into kinetic equatioithviractional
derivative, has been found. These kinetic equataars solve the problem of the correct deductionrrefversibility
phenomenon fofinear systems. The fractional derivative with complexp@xent should enter into a linear kinetic
equation as a structure containing three basicstefiine first term reflects a possible continuowscstre. Other two
complex-conjugated terms reflect a log-periodioty scale, which forms the discrete fractal stitetonsidered. This
complex triad structure is confirmed by numericalcalations. We found also possible structures wieah exponent
v = 0. It can be happened at consideration of sihdtb = 1 and product (32) when one of the limiting vaheaeomes
negativeor these values in asymptotic limit coincides vétich other. We found alsmasi-fractalobjects, which keep
invariant the Riemann-Liouville definition of theattional integral with real and complex exponeiitisese objects
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considerably increase the applicability of the @pimon of the fractional integral obtained previgu®r true fractal
structures. The understanding of geometrical megamh complex fractional exponents helps to geneealihe
conception of recap and reind elements and putdaaivan idea of existence of kinetic equations watimplex
fractional derivatives. The conception of the fimeal exponent helps to understand deeper the ipahdifference
between discrete and continuous organization ofatteamon mesoscale region and identify a set ofiigendiscrete
self-similar structures, taking part in transfed aalaxation processes.

M athematical Appendix

The solution of the generalized scaling equations

Here we want to generalize scaling equations ofyibe (32) and (47) and give their solutions olgdiby the method of an

arbitrary constant variation. Another method ofiiing of solutions of some set of scaling equatisas considered in [29].
At first, one can notice that it is easier to abtsblutions of the generalized scaling equation). (fiie corresponding

solution of the generalized equation (32) is oletiby ordinary exponentiating. In the Table Il agivbelow we use the

following notations7£In(2)) is a log-periodic function, which in the mossea can be expressed in the form

m(In(2)) = G + Gexp(i< Q > In(2))+ G expt i<Q > In(z))
cqo 2T<n> (A1)
In($)
The fitting parameters of this function can be fdwvith the help of the eigen-coordinates method.
Table Ill.
Scaling Equation Solution Comments

1. The limits of
(bz1) applicability:
S(Z) = b ¥+ OC"'Zn: c'z 72 S(2 = #n(n( P+ G +Zn: ¢Z . ¢z G2 <1

=i ) 1-b F\&-b &*-b c,.Zm<1

K(z) = exp( S( z)) K(2) can be

K(26) = A{K(z)]bexp[i(q b+ g ‘i)}

k=1

(b=1)
S(Z)= &y ¢+), c'7+ ¢ ¢

K(zf):[K(z)]exp{wkiﬂ(q £+ g, ‘zk)}

In (5)
K(2) = exp( S(2)

K Z

PEEE

considered as scaling
equation for the
stretched
exponential function.

2.

(b 1) term
S(Z) = b% y+ () o S(2= 2n(in( 3)+ZIn( pr n‘{i'”ﬁf?z CESTRS
K _ é:o f b - k=1

(%) [ K z] and obtain the
b=1) corresponding

] solution.

S(2)= $ yr i(pr S = (94520 ¥ +[ -2
K(zé) =& 2[ K 3] ") ne

K(2) =exp( S(2)

One can add the

The variablez accepts any value and can be real or complexin(b)/In(é).
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