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On the basis of microscopic approach we derive the Eilenberger-type equations of superconductivity for metals with 
exchange-split conduction band. The equations are valid for arbitrary band splitting and arbitrary spin-dependent electron 
mean free paths within the quasiclassic approximation. Next, we deduce general boundary conditions for the above 
equations. These boundary conditions take into account explicitly spin-dependence of F/S interface transparency. We apply 
our theory for the Andreev reflection at F/S interface and derive an expression for the Andreev conductance at zero bias. 
Based on experimental data and our calculations we give estimations of the conduction band spin polarization for series of 
ferromagnets in contact with superconductors. Next, we consider the superconducting proximity effect for a contact of a 
strong and clean enough ferromagnet with a dirty superconductor. Our calculations show that superconducting Tc of an F/S 
bilayer oscillates as a function of the F-layer thickness. At small enough superconducting layer thickness the re-entrant 
behavior of superconductivity is predicted. The theory gives also nonmonotonic dependence of the superconducting layer 
critical thickness on the spin-polarization of the ferromagnetic layer. These unconventional and distinctive features of the 
F/S proximity effect fit well experimental observations. 
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1. Introduction 
At low temperatures, an electric current flows through a normal metal/superconductor (N/S) interface as a result of 
Andreev reflection [1]. An electron is reflected from the N/S interface as a hole into a subband with the opposite spin, 
and the formed Cooper pair moves through the superconductor transferring the charge 2e. The doubling of differential 
conductance of a pure N/S microcontact was demonstrated theoretically in [2] (BTK) based on the solution of the 
Bogoliubov equations. In Ref. [3] an attention was drawn to the fact that the Andreev reflection in 
ferromagnet/superconductor (F/S) contacts is suppressed as the spin polarization of the ferromagnet conduction band 
sets up. This is associated with the fact that the Andreev reflection efficiency decreases with diminishing the number of 
conducting channels in the minority spin-subband (the subband with lower value of the Fermi momentum). In Refs. [4-
7], it was suggested that the suppression of Andreev reflection in F/S contacts can be used for determining the spin 
polarization of the conduction band of ferromagnets (Andreev spectroscopy of ferromagnets). Experimental data were 
interpreted making use of either general phenomenological considerations that the spin-polarized component of the 
normal current does not pass through the singlet superconductor [4-6], or the BTK equations semi-phenomenologically 
adapted to the F/S contacts [8,9]. More elaborated treatment had been proposed in Ref. [10] including the case of 
diffusive conductance in the vicinity of the contact. The BTK theory was generalized and applied to F/S point contacts 
in the theoretical works [11-13]. The expressions obtained for the Andreev conductance in the above works are not 
consistent with each other. Moreover, the results obtained in [11,12] do not reproduce the Andreev conductance at zero 
temperature, which follows from physical considerations and previous work, as we will show below. Number of 
experiments on Andreev spectroscopy of ferromagnets grows [8,9,14-20], what demands an adequate theoretical 
understanding and description.  

Another motivation is the recent discussion of oscillatory phenomena in S/F contacts as a function of the 
ferromagnetic layer thickness [21,22]. Calculations of the local tunnelling density of states [21,22] and the 
superconducting transition temperature [22] do not predict oscillations if the ferromagnet is clean (with mean free path 
much longer than the pairing function oscillation length).  

The paper summarizes our recent efforts to build a consistent quasiclassical theory of superconductor-ferromagnet 
contacts, as well as Andreev reflection and proximity effects for the heterogeneous structures with an interface of 
superconductor and strong ferromagnet [23-25]. We derive quasiclassical equations of superconductivity for metals with spin-
split conduction band and deduce boundary conditions (BCs) for the quasiclassical Green’s functions (GFs) at F/S interface. 
Next, we compute the Andreev conductance of an F/S point contact and give an estimate for the polarization of conduction 
bands of ferromagnetic metals from comparison with experiments on the Andreev spectroscopy. Finally, we analyze 
proximity effect in the superconductor - strong ferromagnet bilayer structure.  

 
2. Equations of superconductivity and general boundary conditions 
2.1. Eilenberger-type equations for a metal with exchange-split conduction band 
We start from equations for equilibrium thermodynamic GFs in a matrix form [26], taking into account explicitly the 
spin splitting of the conduction band,  
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Here, the Green function  !  and the self-energy part  "  are matrices of the form  
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For the 



(���
) function, we will use Zaitsev representation [27] taking into account in a systematic way the spin 

splitting of the conduction band. The quantities related to the metal on the left (right) side of the interface will be designated 
by indices 1 (2). For the sake of definiteness, we assume that the index 1 corresponds to the ferromagnet (F) and the index 2 – 

to the superconductor (S). Thus, for ��� � �
, 
 

� � � �� � � �� � � ��� ��� � � ��� ��� � �� �� � � �� � � �� � � � � � � �� � � �� � � � � � � �� � � �� � � � �� �� � � �� �� �� �� �� �� �� � �  (5) 

Here, 
 !! !  " " "# $% % % &' () *+ ,- ./ ; for 01 1 23 4 , 56 78  in Eq. (5) should be changed to 96 78 . Substituting Eq. (5) into Eq. (4) and 

neglecting the second derivative with respect to :  we obtain equations for ;kn(<=<>): 
 ? @A BC DE C E FB BGHI J K HIHHL L M L N O O O OPOQ R S T TU VW W XY XZ Z [ [ Z Z \ ] \ ^ _` a bc` b` d de fgh

 (6) 

Here, i jk = l lm no p m no pqr rs st u t uv vw wx x xy
 , and z{|}  is determined in the same way. For x,x' > 0, ~��  in Eq. (5) should be replaced by ��� . The equation conjugate to Eq. (6) is derived similarly. Let us pass now to the functions � � �� ���� � � � ��� � �  and � � �� ���� � � � ��� � � , which depend on the sign of the variable ����  and are continuous at the point � = � :  

 ¡¡¡ ¡¢¢¢ ¢£ £££ £¤ ¥ ¦ ¥ ¦ ¥ ¦ §¨©¥ ¦ ª£ ££ £ £££ £¤ ¥ ¦ ¥ ¦ ¥ ¦ §¨©¥ ¦ ª£ £«¬ «¬ «¬«¬ «¬ «¬­ ® ® ® ® ® ®¯ °± ±²³ ³¯ ­ ® ® ® ® ® ®¯ °± ±²³ ³´µ µ¶ ´µ µ·¹̧ º » ¼ ¼ » ½ ¾¹¹º ¿¹ º » À ¼ » Á ¾¹¹Â  (7) 

 Ã ÃÃ ÄÅÄ ÅÅÄÅ Ä ÆÆ ÆÆÇ È É È É È É ÊËÌÈ É ÍÆ ÆÆ ÆÆ ÆÇ È É È É È É ÊËÌÈ É ÍÎÆ ÆÏÐ ÏÐ ÏÐÏÐ ÏÐ ÏÐÑÒ Ó Ó Ó Ó Ó ÓÔ ÔÕ ÕÖ ÖÕ Ò Ó Ó Ó Ó Ó Ó ÑÔ ÔÕ ÕÖ Ö×Ø ØÙ ×Ø ØÚÛÜ Ý Þ ß ß Þ à áÜÜÝ âÜ Ý Þ ã ß Þ äÜÜå  (8) 

In Eq. (5) æ æ æç è éêëì ç íè ç è îïæ æð ñ ñòñ òñð ó ô óõ õö ÷ ÷ø ù ù ù ú . Let us substitute Eqs. (7) and (8) into Eq. (6) and into the equation 

conjugate to Eq. (6). Finding the difference (for n = k) and the sum (for n 
û
 k) of the resulting equations, we obtain the 

quasiclassical equations of superconductivity in a metal with the spin-split conduction band 
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 � ��� � � � �
 � �� �� � � �� � �� �� � � � � �� �� �� � � � � �� ��� ��  (9) 

 � � � �� ��� � � � !  ! "� � � �# ##$ #$ #$ #$% &' ( ( ( ) )* *+, ,++ , - . . ./ /01 2 3425 2 2 6 71 8 97  

The impurity self-energies in Eqs. (9) are  

 : :; ;< <= => ? > ?= =>@ ?A AB BCDE F GH HI J JK L M M NO ∫ PQ  (10) 

 RS ST TU VV VV V WXY Z [\] ] ^_ ` a bc _ d d ce  (11) 

where pS is the Fermi momentum of a superconductor, u is the interaction potential of electrons and impurities, c is the 

concentration of impurities, fS is the mean free time of electrons in a superconductor, and brackets mean averaging over 

the solid angle: gh ij kkk lm no
∫� .  

In the case of an F/S interface, as well as for an N/S interface [27], the system of quasiclassical equations arises. In 

addition to the functions pq , the functions rs  appear, which describe waves reflected from the interface. The above 
Eilenberger-type equations for the metal with the exchange-field-split conduction band had been derived for the first 
time in [23,24]. They are valid for arbitrary band splitting and arbitrary spin-dependent electron mean free paths within 
the quasiclassic approximation. The system of Eqs. (9) must be supplemented with boundary conditions at F/S interface.  
 
2.2. General boundary conditions for the Eilenberger equations 

We characterize the F/S interface by the transmission coefficient, pt , and the reflection coefficient, u uvw xy z . In the 
paper, we do not consider interactions which lead to the spin flip of an electron upon its transmission through the 
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interface. Therefore, matrices pt  and ��  have a diagonal form with respect to spin. They have the same matrix structure 
as ��  in Eq. (3). Taking into account the explicit form of GF given by Eq. (5), and matching the quasiclassical functions 

on both sides of the interface according to the procedure proposed by Zaitsev, we obtain BCs for the quasiclassical 
equations Eqs. (9). For ���� �	 	 
� � � ��� 
 �� � �  (here, ���  and ���  are the Fermi momenta of the spin-subbands of a 

ferromagnet) it is convenient to represent these conditions in the matrix form  

 

���� � � � �� � � ��� �� � � ��� � �� ��� �� �� ���� �� �� �� �� �  � � �� �� ��  � ���!! " "# $ #% & % &' '( (' '( (' '' '( () * ) *++ !!" "# $ #% & % &' '( (' '( (' '' '( () * ) *++
, -, -. // 00 // 00 // 00 // 00 //. 00 / /01 2 1 2, - , -/ /0 0/ /0 0/ /3 40 0/ /0 0/ /0 0/ /// 00 1 21 2  (12) 

Here 5667 89: , ;< <<= >?@A , BC  and DE  are the scattering amplitudes at the F/S interface [27], and the matrix F GH IJ KLM NO PQR QR QR QRS T  is 

the result of the direct product of the unit matrix and U VWX YZ[ . Let us pass in Eq. (12) to the functions \]̂  and _̀a  using the 
relations: 

 bc b bc bd d d de e e ed d d de e e ef ff fg g g gg g g gh hi i i ih hh hi i i ih hj j j jk kk kj j j jl ll lm m m mm m m mn no po p n no po pq r q rq r q rs s
 

 t t t tu u u uv vv vwx wx wx wxy yz z z zy y{ { { {| || |} } } }~ ~� �� �� � � �� �
 (13) 

 �� � �� �� � � �� � � ��� �� �� ��� �� � � �� �� � � �� �� �� � � �� �� �� �� � � � 
 � � ���� � �� � �� � � �  
where ��   and ¡¢£  are the scattering phases associated with the scattering amplitudes ¤¥  and ¦§  at the F/S interface, 

respectively. Next we pass to the ̈ ©ª« ¬­®  and 
°̄ ± ²³ ´µ  matrices, symmetric (s) and antisymmetric (a) with respect to the variable ¶·¸ : 

 ¹º ¹º ¹º» ¼ » ¼½ ½¾ ¾ ¾¿ ¿À Á À ÁÂ Â Â Ã Ã ÃÄ Å Ä ÅÆ ÇÆ ÇÈ É Ê È É ËÌ ÍÎ Ï Î ÏÐ Ð Ð
 (14) 

After this transformation the boundary conditions can be solved with respect to theÑÒ Ó ÔÕ Ö×  matrices and take the form: 

 ( ) ( ) ØÙ ØÙÚ Û Ú ÛÜ Ü Ý ÞÝ Þ ßà à à àß ßá á â âã ä ã äå å
 

 æç ( )èé ê ëì íí ìî î ïðñ ñ òóô õ ö÷ø ÷ø ÷ø ÷ø öù úû ü ýþ
 

 ÿ� ( )�� � �� �� �� � �	
 
 ��
 � ��� �� �� �� �� �� � ��
 (15) 
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( )��
( )

��� �� �� � �� � ! !! " ! !! "# $ $% # $ $% && ''( ) )) ( (* + , -* + , -. .. .  

where / 0 / 0 / 01 23 3 34 56 7 6 7 6 78 8 89 : ;< = >? @A BC C C
, the DE F GH IJK

 functions are determined in the same way. Indices L  and M  denote the 

diagonal and off-diagonal parts of the matrices: N O P PP Q RS TU UV W X XX Y YZ [ \ . The coefficients ]̂  equal  

 _`abc`db ee f f g gf ff f g gh h h hh hh h h hii j jjj jkl mkl n o pq
 (16) 

If the interference of waves arriving from neighboring interfaces can be neglected, and rst  does not depend on u , the 

boundary condition containing only the function vwxy  can be obtained: 

 z { | } | }z { | } z {~ ~ ~ ~ ~ ~~ ~ ~ ~~ ~ ~ ~ ~ ~~ ~ ~ ~� � � �� � � �� � � �� � � � � �� � � �� � � � � �� � � �� � � �� � � � � �� � � � � �� � � �� � � �  (17) 

The ���
 matrices equal 
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� � � �� 
 � 

 � 
 �� 
 
 �� 
 
 �� � � � � �� � � � � �� � � �� � � �  (18) 

In this case, the system of BCs consists of Eqs. (17) and the first equation of Eqs. (15). Note that only the diagonal part 
of the functions is continuous at the F/S interface. These BCs take into account explicitly the spin-dependence of F/S 
interface. Previously quoted boundary conditions for the F/S interface can be obtained (if they are not wrong) as 
approximations, or limiting cases of our general BCs, Eqs. (12)-(18).  
 
3. Andreev conductance of an F/S point contact 
3.1. Basic formulas for a point contact 
We consider an orifice of the radius a in an impenetrable membrane as a model for the point contact. At zero 
temperature, the expression for Andreev conductance GA can be written from the following physical considerations. Let 
us find the current in the ferromagnet at � � �� � �� �� � . Then, in the case of specular reflection from the interface, ��� ��� ���� � � �� � � �   !! " " # #$ $ $ . The incidence angles of electrons, which can be Andreev reflected from the 

interface in the spin-up subband, are determined from the relationship %&' %&'( () )* *+ + , ,-  and depend only on the 

parameter ./0 12 / 345 . Electrons incident at more slanted trajectories will undergo total internal reflection. The 

problem becomes equivalent to the problem of finding the conductance of a point contact of normal metals with 
different Fermi momenta (in this case, they are 678  and 675 ) when these metals are in direct contact. Using the known 

solution of this problem by Zaitsev (eq. (38') in [27]), we find 

 

999 :; <= >< ?> @<A > B CD E F GH I H HJ JJ KL MNO NO NNO PQ RP PST T U T US  (19) 

where A is the contact area. The equations for GA(T = 0) obtained in [11,12] do not coincide with this result. At V = 1 

(non-magnetic metal with equal WXY  and WXZ ), the Andreev conductance equals the doubled Sharvin conductance, which 

corresponds to the doubling of conductance as a result of Andreev reflection [1]. Let us now find an expression for the 
Andreev conductance in the case of arbitrary transmission coefficients. We start with equation for the electric current I 
in the linear approximation with respect to the electric field [ \ \]^_` a ab

. The current is calculated on the ferromagnet 

side at c d 0: 

 

e e ef f f ff ghij klm n o pqrs t m ut u t u t uv wx yv wz{ |} ~ ~ �| � � �~� � � �� � �� �� �� ���� �� � ���� � ��� �� �� �� � ��� ��� �� � � � � ���� ��∫

∫

� �� � � � � �  (20) 

Here,   ¡¢ £¤
 is the retarded (advanced) GF, which is obtained from the temperature GFs (Eqs. (1) to (5) by substituting ¥¦ §¨

 for ©ª«
. Let us substitute representations given by Eqs. (5), (7) and (8) into Eq. (20). After performing the 

Fourier transformation with respect to the ¬ ¬­®  coordinate, we obtain the ballistic conductance ¯ °± ²
 of an F/S point 

contact: 

 ³ ³ ³ ³
}

´ ´ ´µ¶·µ¸ ¹º»¼ ½ ¾ ¿ ½¾ ¿À À À ÀµÁ Â Ã Ä Å Ä ÅÄ Å Ä ÅÆ Æ Ç ÇÃ Ã Ã ÃÆ Æ Ç ÇÈÉÊË È ÌÍ Í Í Í Ë Ë Ë ËÎ ÏÐ Ï ÐÎ Î Î ÎÑÒ ÓÑÔÕÕÖ ×Õ ØÕÙÚ ÛÜ Ý Ý Þ Ý ßà áâ ã∫ ∫
äå

 (21) 

Now, we must solve the first of Eqs. (9) with the BCs given by Eq. (17). When æç  is independent of è  the solution 

to Eq. (9) takes the form  

 é éêé ë ê é ëì ìì í îïð ïðñòó ôõ ñòó ôõö ö÷ ÷ ø÷ ÷ù ú ù úû üý þÿ . (22) 

Matrices ���
 represent the values of GF ���  at large distances from the F/S interface: 

 ���� � 		 	
 � �
 �� 
 �� �� ��� �� �� �� �� �� ��� �� �� �� �� �� ��� �� � ���� ��� � � � ��� �� � �� � �� !  (23) 

Passing in Eq. (22) to functions "#$% , substituting them into the system of BCs given by Eqs. (17), and solving them in 

the linear approximation with respect to & & &' () *+ ,- - -. . ./ 0 1 2
 we find the Andreev conductance 34

 of the F/S point 

contact: 
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 � � � ���� �� ��� �� � 	
�� � 
 ��
 �� � �� � � ��� � � � �� � �� � � ��� �� ��� � �� � � �� � �  !" #$ ! %∫

∫ &'  (24) 

It depends on the relationship between the Fermi momenta ()* , ()+ , and ,- . Thus, at . / .0 0 01 23 3 , the expression 

for 45  takes the form: 

 

6 76 8 66 6 68
9 : ;< =>?@ A?BC9A :9; : <DE FG HI JKL KLM MJ N N N N KO P QQ RS R T RR R T R T

UV W XU YZ YZ YZ Y[ \] ^_ `∫

∫

 (25) 

In the case of a nonmagnetic metal, where Da = Db, the expression for the Andreev conductance obtained in Ref. 

[27] follows from Eq. (25).  
 
3.2. Discussion of experiments on the  Andreev spectroscopy 
The ratio of GA to GF/N, where GF/N  is the conductance of an F/S contact in the normal state, is given in [4-8]. In our 
approach the latter quantity is 

 

c cc c dc ce fg hijek glke g hijek gl f mm n o nnpq rs t u vpq r u vw x xyy x xy z { |}~ }~ }}~ �� �| � � ��� � �� �∫

∫

 (26) 

Eqs. (24)–(26) are valid for arbitrary transmission coefficients Da. For 
particular calculations we use the model expressions for the transmission 
coefficients corresponding to the direct contact between S and F metals: 

 � �� �� � � �� �� � � �� �� � � �r r r rv vr r r r� �� �� �� � � �� �  (27) 

With these transmission coefficients, GA(T = 0) and GF/N  can be calculated 
analytically: 

 

�� �� � ��� � � � �� �� �� � �� �� � � � �� � � ��� �� � � � �� � �� � � �   ¡ ¡   ¡ ¡    ¡ ¡¢ £  ¤ ¤ ¥ ¥¡  ¡  ¡   ¡¦  ¡  ¡  ¡  ¡ ¤ ¥¢ £§ §¨ § ©§ §  (28) 

for GA(T = 0) the expression (19) is obtained. Here, ª « ¬­ ­®¯ ¯° ±  and ² ³ ´µ µ¶· ·° ± . From Eqs. (19) and (28) it follows that 

the Andreev conductance at ¸ ¹º» ¼ ½
 becomes smaller than the conductance of the contact in the normal state. Dependence 

of the ratio GA(T = 0)/GF/N on the parameter ¾ is given for various temperatures in Fig. 1. The ratio ¿ À ÀÁÂÃ Ä Å
 corresponds 

to the experimental conditions [5] (T = 1.6 K, ∆Nb = 1.5 meV). In order to interpret universally the experimental data obtained 
in [5] for a series of ferromagnetic materials in contact with superconducting Nb, we fixed the Fermi momentum of the 

superconducting metal by the equation Æ ÆÆ ÇÆÈ É ÉÊ Ê ÊË ÌÍ Î Í ÎÍ Î Ï ÐÑ ÑÑ Ò ÒÒ Ñ ÑÑ Ò ÒÒ Ï ÐÑ ÑÑÑ Ñ ÑÒ Ò ÒÓ ÔÕ Ö Õ Ö Õ ÖÏ Ð× ØÙ Ú Ùconst. Now, the values of Û (abscissa) can be estimated by 

the value of the reduced conductance at zero voltage across the contact (ordinate). Emphasize that in this calculation we 
assumed absence of an oxide or similar barrier at the F/S interface (ZBTK = 0). The estimated results for Û are given in the 
Table.  
 

Table 
Material under 

study [5] 

Ü
 Pc (%) Pc (%) [5] 

NiFe 
Co 

NiMnSb 
LMSO 
CrO2 

0.64 
0.55 
0.48 
0.31 
0.18 

42 
52 
63 
83 
94 

37±5.0 
42±2.0 
58±2.3 
78±4.0 
90±3.6 

 

 
 

Fig. 1. Dependence of the normalized 
Andreev conductance on the ratio Ý
 of the Fermi momenta of spin 

subbands of the ferromagnet’s 

conduction band ( Þ Þß ßà á âã ä ) 
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Note that our values �(Ni) = 0.64 (from data of Ref. [6]) and �(Co) = 0.55 obtained from the Andreev spectroscopy turned out to be close 
to the upper estimates for �(Ni) = 0.64 and �(Co) = 0.57, which we obtained 
in Ref. [28] from the data on the giant magnetoresistance in magnetic point 
contacts [29].  

Let us now compare our results with the original estimates of polarization 
obtained in [5] (see the last column of the Table). The authors argue that the 
normalized conductance measured in their work depends on polarization as ��� �� � � �	 	 
� � 
 �  (Eqs. (4)-(6) in [5]), where � � � ��� � � � �� � � �� � � �  and � � �� � ��  is the conductance at high voltages across the contact ( ! "#

). In 

the course of discussion, the authors identified the current polarization PI with the 
contact polarization $ $% & % & %' & %' &( ( ( ()* + , + , + , + , - -. . / / . . / /0 1 2 3 0 1 2 3 , 

where 45  and 67  are the density of states and the Fermi velocity in the 8 -spin subband of the ferromagnet, respectively. This 

identification is not quite correct, because it implicitly assumes independence of the total current 9 9: ;<
 through the contact in 

the normal phase from the spin polarization of the ferromagnet. It is evident from Eq. (28) that GF/N essentially depends on =. As a 
result, the reduced conductance GF/N (V = 0) /GF/N  is the nonlinear function of the contact polarization Pc (Fig. 2). It is seen from 
Fig.2 that identification of PI with Pc leads to a systematic underestimation of the Pc values extracted from experiment (compare 
the third and the fourth columns of the Table). Note here, that numerical calculations of the conductance at zero voltage per-
formed in [13] (see Fig. 4 of that work for Z = 0, T/Tc = 0.2) fit well the linear dependence on the contact polarization proposed in 
[5] (dash line in our Fig. 2). From this observation it follows that calculations made in [13] also give underestimated values of the 
contact polarization taken from the conductance at zero voltage. Our theory allows to estimate the polarization parameter = of the 
ferromagnet’s conduction band, through which the polarization of the density of states PDOS, the tunnelling polarization PT, and 
the contact polarization Pc are expressed. Our analysis of experiments on Andreev spectroscopy leads to values of Pc that 
systematically higher than those estimated previously.  
 
4. The superconductor - strong ferromagnet proximity effect 
The ferromagnet-superconductor contacts are interesting not only as a tool to measure conduction band polarization of 
ferromagnets, but also as a unique combination of materials to build >-contacts [30] and superconducting logic circuits 
[31,32]. The physics behind the >-contacts is the unconventional Larkin-Ovchinnikov-Fulde-Ferrell (LOFF) pairing in 
ferromagnetic superconductors [33,34], which manifests itself in F/S contacts by oscillations of the superconducting transition 
temperature [35,36], tunnelling density of states [37], Josephson current [38-41] as a function of F-layer thickness or 
temperature. The realization of the LOFF-like pairing in weak ferromagnets (ferromagnetic alloys having low Curie 
temperatures ~100 K) is certainly proved [32,37-39,41]. The case of the contacts of superconductors with strong 
ferromagnets, like Fe, Co, Ni, is still questionable. In fact, there are calculations of the local tunnelling density of states 
[21,22] and the superconducting transition temperature [22], which do not predict oscillations of the above mentioned 
quantities, if the ferromagnet is clean (with mean free path much longer than the pairing function oscillation length). Direct 
experimental verification is very difficult, because one needs ultra-thin, few monolayers thick, ferromagnetic films of 
excellent quality. In the section below we show, that in the case of clean enough ferromagnets the critical temperature still 
oscillates as a function of the F-layer thickness.  
 
4.1. Boundary conditions for the "dirty" superconductor - strong ferromagnet bilayer 
To find quasiclassic Green functions at the F/S interface one needs to solve the Eilenberger-type equations (9) for the 
every metal in a contact. Near the transition temperature the equations can be linearized with respect to the anomalous 

Green function ? @AB CD : 

 

E FE F E FE F E FGH HH GI JI J I JI J K L I JK MN M M MO PO QRRQS TUV UV UW X Y W ZV UV U[ [ \V UV] ^  (29) 

Then, the first of equations in (9), applied to the superconductor homogeneous in the plane of the contact, reads 

 

__ __ `` ` `a b c` `defa bg g gg g g gh i i ig ggih j k lm no o op om opq q q rq s rt u v w xy z{t t y u {t  (30) 

where | | |} }~ � ��� �  is the component of the mean free path along the normal to the contact plane. Analogously, we 

deduce the equations to find GF ����  and ����  for the ferromagnet: 

 
Fig. 2. Dependence of the normalized 

Andreev conductance on the contact 
polarization Pc 
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� � �� �� �� � �� � �� ����� � � �	 	
 
 
	 	 
 
� � �	 	 	 	

 
	 	� 
� �	 	 � �� � � � �� � � � �� �� �� � �� � � � ��� �� ��� �� �� � ��� �� �� �� ��� � ��� �� �� �� � � � � ��� � � �� �� �  � !" � " � � !" �  (31) 

where 

 # #$ % & $' % &()*% &' '+ +%$ &, , , ,- . , , ., , , ,- -/ /, ,0 0 1 12 3 31 1 1 145 67 70 08 89 : :8 ;< = < = < = < =< = < =<= < =>? > @ @A A B> >C D? @ @ E∫ FG  (32) 

In the above H HI IJ KL L LMNO O , PQR  is the mean free path in the S -th spin-subband of the ferromagnet. In the second line 

of (32) the angular integration is constrained [42] to fulfil the specular scattering condition:  

 TUV TUV TUVW W X XY Y Y YZ Z Z[ [ \ \] ] ] ^_  (33) 

In Eqs. (31)-(33) and hereafter ̀ab  and `ac  are the Fermi momenta of the spin-subbands of the ferromagnet.  

Solution of Eq. (30) with the boundary condition d e f ghi jk l m n  reads: 

 o pq qr s tuvr s r sw qqx r s y r sz{ |{}|~ ~� �� �~ ~~ ��� � �� �� � ��� � � � �� � � ��� � �� � �� � �
∫

 (34) 

In the equation (34) the integrand in the square parentheses has the spatial range � �� � �� � ��   ¡ ¢£ ¤ ¥¦ § ¨ , where ©ª ª ª« ¬ ­® ¯  is the diffusion coefficient of electrons in a superconductor. Expanding the slow varying function around 

the point °± ²
 and taking it out of the integral we obtain ³ ´ µ¶· ¸¹ :  

 
º» » »¼ ½ ¾¿À¼ ½ ¼ ½ º ¼ ½Á Á ÁÁ ÁÂ Ã ÄÁÅ Æ ÅÇÈ È É ÈÊ Ê ÊÇÈË Ì ÍÍ Î ÏÐÑÒ Ó Ó Ô Õ ÖÐÑ ÐÑ× Ø  (35) 

Solution for the ferromagnet is sought in the form: 

 Ù Ú Û Ú ÛÜÝÞß Ú ÛÚ Ûà à à àá â ã â äå æ ç æè èé ê ë  (36) 

where  

 ì íî ï î ï ðñòî ï î ïó ó óôõö ÷ ö ÷ ø ö ÷ù ù ùú û ü  
 ý ýþ ÿ þ� ÿ � �� � � �� �� � � �� � � �� � � �� � 	 
� � � �� � � � �
 
� � 
 � ��  (37) 

 � �� � � �� � � � �� �� � � �� � � � �� � � � ��� !  � "
 

In the equations (37), the quantities #$  and %�  do not depend on the angles &'  and &( . As in the above Sections we assume ) )* *+ ,- . Substituting the solution (36) into the equation (31) one obtains the integral equation to find #$  and %� : 

 % % % %. / 0 1. / 0 / 0 /. 0 / 02 3 32 2 2 23 3 3 345 5 56 6 5 5 5 578 7 9: : ;; : : ; : ;< = >< ?∫ @A  (38) 

For the strong ferromagnet the solution of the above equation is (the relative accuracy is B CD DE F GH IJK JK JJK L LM N O ): 

 P QR STU U V VWXY Y X XZ Z[\] \ \ ]^ _ ^ `a∫ bc  (39) 

Satisfying the boundary conditions (17) we obtain d efghij  and d efgkij : 
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� ���� ���� � � � �� ���� ����� � � � �		 	
� � 	 	
 �	� 	
� � 	 	
 ��� � �� ���� � � � �� ���� � � �� � � �� �� ��� ��  ! " #$� �� ��% &� ��� ��  ! " #$� �� ��' % &  (40) 

where 

 
() *+ ,*  

 

-. /0 1 .1 /2 334 4 5 55 5 5 5 667 8 7 89 :; <; <7 8 7 8= >? @ A A B C? @ A A B C  (41) 

 

D EF GHIJD EK L LK K K KL L M MM M NOP Q QR SR S TU V 
In deriving the above equations we neglected spin-dependence of the phases of the scattering amplitudes in the general 
boundary conditions Eqs. (17).  

To formulate particular BC for the contact of a strong ferromagnet with a dirty superconductor we use the Ansatz 
proposed in Ref. [43]: at distances of the order of the mean free path W XY YZ Z[ \] ^ _ `

 in a superconductor, when the terms 

proportional to a bcd defdg gh i j
 and k lmn o pq q rs tu v wx y  can be neglected, one may write down 

 z{|} } }~��� � ����� ��� � �� � � ��� � ��� � ��� � �∫  (42) 

where Tc is constant. This constant can be found substituting into Eq. (42) the antisymmetric combination 

 � ����� ��� ��� � �� ���� �� � ¡¢ £ ¤ ¥¦  
which corresponds to the solution of the Usadel equation [44] for the "dirty" superconductor far away from the F/S 
interface. The result is: 

 
§ ¨¨ ©ª«¬ ­¨ ® ¯¯ ¯° ± ²³´ µ¶ ³·¸¹º » ¼ ½ ¾  (43) 

Now, we calculate the same constant with the use of the function ¿ ÀÁÂÃÄÅ  taken from the equation (40) above, and 

obtain the boundary condition for the averaged over the solid angle GF, ÆÆ Ç È ÉÉÊ ÊË ÌÍ ÎÏ Ð : 

 

Ñ ÒÑ ÒÓ ÓÔ ÔÕ Ö Õ Ö ×Ø ØÙÚÛÕÜ Ö ÝÞÙÕ Ö ÙÚÛÕÜ ÖÜ Üß ßß à àß ß ß ß ßáâ ã ãä äáãá å á åæ æ çç ç çç è è ç è è èé ê é êëé ê é ì∫ ∫
 (44) 

The upper limit in Eq. (44) depends on the relation between the Fermi momenta of contacting metals, and is 
determined from conservation of the parallel component of the transferred momentum (33). If the Fermi momentum pS 
is the smallest of three, ϕ = í/2. The quantity B is determined in Eq. (41), it is a function of the angles îï  and ðñ , 
which obey the scattering specularity condition (33). The boundary condition (44) is valid for the dirty superconductor - 
strong ferromagnet interface at arbitrary transparency.  
 
4.2. Critical temperature of F/S bilayer 
To find the superconducting transition temperature Tc of the bilayer we solve the linearized Usadel equation at 
temperatures close to Tc: 

 

òò óó óô ôõ õõ ö÷ ÷øù úû ûøü ýþ ÿ ÿ � ��
 (45) 

and satisfy with this solution the boundary condition (44). The problem is easily solved in the single-mode 
approximation [45], which is valid at intermediate supessions of Tc against unperturbed transition temperature of the 
isolated superconducting film, Tc0:  

 ���� � �� ��	
 � �
� �� � �� �� � � �� � �� ��� � � � � � ��� ��  (46) 

where ��  is determined from BC (44):  
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 ���� �� � � �� �� � 	
 � (47) 

Substituting (46) into the self-consistency equation,  

 �

 
��� � � �� � ��� � ��� � � �� �� ����� �  ! "# "#! $ % & $ '"# ""# ( () *∑  (48) 

one finally gets the equation for finding the transition temperature of the dirty superconductor - strong ferromagnet 
bilayer: 

 + +,-. / 0 01 12 34 256 76 7 8989 8: ; < ; = >989 889 9 8? @ 9? @  (49) 

 

ABC DEF FGH IJK LM N  
 
4.3. Results and discussion of proximity effect 
Upon solution of the equation (49) we will neglect dependence of OP  on QR , because we consider strong ferromagnet with 

energy of the exchange splitting of conduction band which is much larger than the thermal energy. As is was done in the 
discussion of experiments on Andreev spectroscopy, we fix the Fermi momentum of the superconductor by the relation S SS TSU V VW W W XYZ[\] ^_ ` _ `_ ` a bc cc d dd c cc d dd a bc ccc c cd d de fg h g h g ha bi jk l k , and use the above formulas (27) to evaluate the interface transmission coefficients.  

The results of calculations for the set of parameters: m nop pq qr s tu v u w x  yz z{ {| }~ ~ � � �  � �� �� �� �� � � �
 � ��� ����� �� � �

 [ � ��� � �� � �� �  ¡ ¢£ ¤  – is the coherence length of dirty superconductor] are displayed in Fig. 3. 

The parameters approximately correspond to the contact of nickel with niobium or vanadium. The figure shows 
damped oscillations of transition temperature as a function of the ferromagnetic layer thickness. As the 
superconducting layer becomes thin enough, the re-entrant behavior of the superconducting transition temperature 
is possible (the lower, solid curve on Fig. 3), which has been observed in the experiment [46,47]. The results for 
the another calculation with only the exchange splitting parameter is changed, ¥ ¦¦§ §¨ ¨© ª «¬ ­ ¬ ®  (this 

corresponds approximately to cobalt), are displayed in Fig. 4. Comparison with the previous figure shows that 
superconducting Tc suppression is weakened in the contact with the stronger ferromagnet (¯(Co) < ̄ (Ni)), which 
seems to contradict expectation. However, one should keep in mind that when conduction band polarization 
growths, the interface transparency decreases as a result of increasing mismatch between Fermi momenta of the 
superconductor and the ferromagnet. Growing isolation of S and F layers dominates the increase of depairing 
influence of the exchange field. This scenario has been realized in the layered system °± ±²³ ´ ´µ ¶  [48]. With 

increasing the iron content ·  in the ferromagnetic alloy ¸¹ ¹º» ¼½
 the non-monotonic behavior of the 

superconductor critical thickness was observed at fixed thickness of the ferromagnetic layer. The pure iron layer 
suppressed Tc weaker than the alloy with the iron concentration ¾ ¿À ÁÂ . Our calculations take into account 
explicitly the dependence of the interface transparency on the conduction-band exchange splitting, giving the 
theoretical basis for the extensive discussions of the F/S interface transparency based on the experimental data 
[42,46-49]. Our results do not contradict conclusions by Bergeret et al. [22]: Figs. 1 and 2 show that at small Tc 
suppression, when Ã ÃÄ Ä ÄÅ Å ÅÆ Ç , and for È ÈÉ ÊËÌ , the oscillations amplitude is considerably smaller than the 

asymptotic value of the suppression, Í Î ÏÐÑ Ñ ÑÒ Ò Ò ÓÔ Õ Ö × Ø
 (see upper curves in Figs. 3 and 4). Thus, the 

oscillations of Tc are beyond the approximation adopted in Ref. [22].  

   
Fig. 3. Dependence of the superconducting critical temperature 

of F/S bilayer on the thickness of the ferromagnetic 
layer at Ù = 0.65. Values of other parameters are given 
in the text 

 

   Fig. 4. Dependence of the superconducting critical 
temperature of F/S bilayer on the thickness of the 
ferromagnetic layer at Ù = 0.55. Values of other 
parameters are the same as in Fig. 3 
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It interesting to note, that at certain thickness of the F-layer the decrement of Tc oscillations decay does not increase 
when decreasing the mean free paths ��� , as it could be expected, but decreases. This unusual behavior is explained by 

exclusion of slanted trajectories, along which the path of electrons inside the ferromagnetic film exceeds their mean free 
path. In the certain range of the thickness dF the effect of closing the cone of effective trajectories, which couple F and S 
layers, dominates over their decay because of scattering. As the thickness dF approaches mean free paths, the cone of effective 
trajectories collapses toward the film normal, and solution of the problem approaches the single-exponential one [42].  
 
5. Conclusion 
In this paper we summarized results of our theoretical studies of the contacts of superconductors with strong 
ferromagnets. On the basis of microscopic approach we derived for the first time the Eilenberger-type equations of 
superconductivity for metals with exchange-split conduction band. The equations are valid for arbitrary band splitting 
and arbitrary spin-dependent electron mean free paths within the quasiclassic approximation. As a next step, we 
deduced general boundary conditions for the above equations. These BCs take into account explicitly the spin-
dependence of F/S interface transparency. All other correct formulations of the boundary conditions for the F/S 
interface can be obtained as approximations, or limiting cases of our general BC.  

We applied further our theory for the Andreev reflection at F/S interface and derived an original expression for the 
Andreev conductance. Our expression takes into account explicitly spin dependence of the interface transparency and 
spin-dependent conservation laws at scattering on the F/S interface. Based on the experimental data and our calculations 
we give estimations of the conduction-band spin polarization for series of ferromagnets in contact with 
superconductors.  

Next, we considered the superconducting proximity for contact of strong and clean enough ferromagnet (electron 
mean free paths much longer than the oscillation period of the pairing function) with dirty (short mean free path) 
superconductor. We showed that superconducting Tc of the F/S bilayer oscillates as a function of the F-layer thickness. 
At small enough superconducting layer thickness the re-entrant behavior of superconductivity is predicted. The theory 
takes into account explicitly the spin dependence of the interface transparency, which results in non-monotonic 
dependence of the superconducting layer critical thickness on the spin polarization of the ferromagnetic layer. These 
unconventional and distinctive features of the F/S proximity effect fit qualitatively experimental observations.  
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