THEORY OF SUPERCONDUCTOR -
STRONG FERROMAGNET CONTACTS

L.R. Tagirov, B.P. Vodopyandv

'Kazan State University, 420008 Kazan, Russia
“Kazan Physico-Technical Institute of RAS, 420029 Kazan, Russia

TEOPUSI KOHTAKTOB
CBEPXITPOBOJHUK-CHJIbHBIU ®PEPPOMATI'HETHUK

JLP. Taeupos*, B.I1. Booonwanos”

1 o o
Kazanckuii cocyoapcmeennuiil ynueepcumem, Kazano
2 . .
Kazanckuil pusuxo-mexnuyeckuti uncmumym PAH, Kazano

asgneftic
Resonance

in Solids Volumes6, No. 1,
Electrenic Journal page5199-211, 2004

http://mrsej.ksu.ru




Theory of superconductor - strong ferromagnet contacts

200

THEORY OF SUPERCONDUCTOR -
STRONG FERROMAGNET CONTACTS

L.R. TagiroV, B.P. Vodopyandy
'Kazan State University, 420008 Kazan, Russia
“Kazan Physico-Technical Institute of RAS, 420028aKaRussia

On the basis of microscopic approach we deriveBitenberger-type equations of superconductivity feetals with
exchange-split conduction band. The equations @ie for arbitrary band splitting and arbitrary rspiependent electron
mean free paths within the quasiclassic approximatNext, we deduce general boundary conditionsttfer above
equations. These boundary conditions take intowstexplicitly spin-dependence of F/S interfacesparency. We apply
our theory for the Andreev reflection at F/S irdedf and derive an expression for the Andreev céawdce at zero bias.
Based on experimental data and our calculationgivesestimations of the conduction band spin pd¢ion for series of
ferromagnets in contact with superconductors. Negtconsider the superconducting proximity effecte contact of a
strong and clean enough ferromagnet with a difpestonductor. Our calculations show that superacivdyiT, of an F/S
bilayer oscillates as a function of the F-layeckhess. At small enough superconducting layer rigisk the re-entrant
behavior of superconductivity is predicted. Theotliegives also nonmonotonic dependence of the sopéucting layer
critical thickness on the spin-polarization of feeomagnetic layer. These unconventional andndiste features of the
F/S proximity effect fit well experimental obselieals.
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1. Introduction

At low temperatures, an electric current flows tigbh a normal metal/superconductor (N/S) interfagea aesult of
Andreev reflection [1]. An electron is reflectearn the N/S interface as a hole into a subband thithopposite spin,
and the formed Cooper pair moves through the sopdrigtor transferring the charge. Zhe doubling of differential
conductance of a pure N/S microcontact was denmtestrtheoretically in [2] (BTK) based on the sautiof the
Bogoliubov equations. In Ref. [3] an attention wasawn to the fact that the Andreev reflection in
ferromagnet/superconductor (F/S) contacts is sggpreas the spin polarization of the ferromagnatigction band
sets up. This is associated with the fact thatdth@reev reflection efficiency decreases with dirsiting the number of
conducting channels in the minority spin-subbahé @ubband with lower value of the Fermi momentumpefs. [4-
7], it was suggested that the suppression of Andreflection in F/S contacts can be used for deitding the spin
polarization of the conduction band of ferromagr@isdreev spectroscopy of ferromagnets). Experialetéita were
interpreted making use of either general phenonogyedl considerations that the spin-polarized comepé of the
normal current does not pass through the singf@trsonductor [4-6], or the BTK equations semi-pheanologically
adapted to the F/S contacts [8,9]. More elabor#teatment had been proposed in Ref. [10] includimg case of
diffusive conductance in the vicinity of the corttathe BTK theory was generalized and applied ® [pdint contacts
in the theoretical works [11-13]. The expressiobtamed for the Andreev conductance in the aboveksvare not
consistent with each other. Moreover, the resuitaioed in [11,12] do not reproduce the Andreevdemtance at zero
temperature, which follows from physical considiersg and previous work, as we will show below. Nemiof
experiments on Andreev spectroscopy of ferromaggetsvs [8,9,14-20], what demands an adequate ttiealre
understanding and description.

Another motivation is the recent discussion of kettiry phenomena in S/F contacts as a functiorthef
ferromagnetic layer thickness [21,22]. Calculatiook the local tunnelling density of states [21,22hd the
superconducting transition temperature [22] dopretlict oscillations if the ferromagnet is clearitmwmean free path
much longer than the pairing function oscillatiength).

The paper summarizes our recent efforts to buittbmsistent quasiclassical theory of superconddetasmagnet
contacts, as well as Andreev reflection and prayingffects for the heterogeneous structures withirderface of
superconductor and strong ferromagnet [23-25]. ¥ivel quasiclassical equations of superconductivitynetals with spin-
split conduction band and deduce boundary condit{BiCs) for the quasiclassical Green’s functionsg)Gt F/S interface.
Next, we compute the Andreev conductance of arpbit® contact and give an estimate for the poladreaof conduction
bands of ferromagnetic metals from comparison eitperiments on the Andreev spectroscopy. Finally, amalyze
proximity effect in the superconductor - strongdenagnet bilayer structure.

2. Equations of super conductivity and general boundary conditions

2.1. Eilenberger-type equations for a metal with exchange-split conduction band

We start from equations for equilibrium thermodyima@Fs in a matrix form [26], taking into accountpécitly the
spin splitting of the conduction band,

2
ie,r 4= LAt iU - S|Gr e,) = 6 — 1) @)
2m Or
Here, the Green functio@ and the self-energy paﬁ are matrices of the form
~ G(\(\ Fn—(\ ~ Z(\a Zn—n
G=| _ _ |, 2= _  _ (2)
“Fova Gooa e Zaa
In addition,
N 0 A N 2 0
A= 5 , Q= i pFT E (3)
-A- 0 2m 0 p;,

7, are the Pauli matrices, is the spin indexs, = (2n + 1)7T is the Matsubara frequenc¥, is the order parametep,’

is the Fermi momentund/ is the electron interaction energy with the elegotentialr = (z, 0), andp = (y, 7). Hereafter we
use the unit system at whigh=c =1, so that we do not distinguish momentum andewauimber, for example. We assume
that the F/S interface coincides with the plare0. Making use the Fourier transformation witpect to the coordinatg ¢

©) we obtain the equation fc(r?(:c,:c’) = é(x, T, p.sP:€,) Py is the projection of the momentum onto the contéae,
o= (po+ P)I2 is the center-of-mass coordinate, in that fadidhe index¢" of g. will be omitted for brevity):

2 a2 A
e r,+ 0 V10 L Py Ay o3 G xx) =(x- X) )
2m 0x 20p 2m
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e ~2
Py P
2m 2m

For theG(z,z") function, we will use Zaitsev representation [25king into account in a systematic way the spin

splitting of the conduction band. The quantitidatesl to the metal on the left (right) side of ihkerface will be designated
by indices 1 (2). For the sake of definitenessasgime that the index 1 corresponds to the fernaehglg) and the index 2 —

to the superconductor (S). Thus, for < 0/,
(;‘l — eiﬁlr A G*iﬁuﬂ/ + e""ﬁlr A pihut
Gll ‘ GQZC‘ (5)
—l—@iﬁlzzé el —I—e*iﬁulé e ih1T
Here, p,, = [p, — p” . for z,2' > 0, p,, in Eq. (5) should be changed fq. . Substituting Eq. (5) into Eq. (4) and
neglecting the second derivative with respect twe obtain equations f@#(z,z"):

Vi 0

. ) 0 ~
ZEWTZ—Z(—l)‘v]l.aﬁ- 2 op +A,-U—-%, Guolrz)=0z=z. (6)
Here, Zk:ei b A i) pr , and i is determined in the same way. kot >0, v,, in Eq. (5) should be replaced by

v,, . The equation conjugate to Eq.(6) is derived lailyi Let us pass now to the functioris= j(z,z , p ) and

G = @(x,x', ) » which depend on the sign of the variaple and are continuous at the pairt ="

= 26,0 A(@) G, 2) A (@) — sen(z — ), B, > O
9. = 2iJ05 Af2)Gonl@,2) A(@) o0 +sgn(e — ), P, <O;
o [ =A@ z’m;(zm —sgn(z—a'), b, >0 (8)
— 205, Af@)G(@.2) Ai@)Gy +sen(e o), §, <0,
In Eq. (5) 4,(z) = exp{—z’(—l)‘ (P, — 7.D,72)x/2} . Let us substitute Egs. (7) and (8) into Eq. (&) ato the equation

conjugate to Eq. (6). Finding the difference (fork) and the sum (fon#K) of the resulting equations, we obtain the
quasiclassical equations of superconductivityrimegal with the spin-split conduction band

)

>
I

0 1 0 O 5o
Sgl’l(p :/) g + V” (v?jlg + gvl‘jl) + [K~ g], = Oa

2 '9p
8 1 0 PPN ©
sgn(p, )3 G + ZVH ap (”170 (Y’Uu) +[K’G}+ =
K = —ig(ie,7, + A =S5 —i(p,, — 7..72)/2,
la,b], = ab £ ba.
The impurity self-energies in Egs. (9) are
A F . dp 1.7 _1
57— —iclul | 2 ), (10)
(2m)
. 1 . 1 s
Z‘q:—z. Aq<g‘q>,T:c\u\2%, (11)
27 T T

wherep® is the Fermi momentum of a superconduatids the interaction potential of electrons and iniies, c is the
concentration of impurities;” is the mean free time of electrons in a supercoimipand brackets mean averaging over

the solid angle | ~— 9§dQ/47T.
In the case of an F/S interface, as well as fal&hinterface [27], the system of quasiclassicalatigns arises. In

addition to the functiongj, the functionsG appear, which describe waves reflected from therfexce. The above

Eilenberger-type equations for the metal with tRehange-field-split conduction band had been derifex the first
time in [23,24]. They are valid for arbitrary bagplitting and arbitrary spin-dependent electron migae paths within
the quasiclassic approximation. The system of E)anust be supplemented with boundary conditiaiga interface.

2.2. General boundary conditions for the Eilenberger equations

We characterize the F/S interface by the transonissoefficient, D , and the reflection coefficienfz = 1— D . In the
paper, we do not consider interactions which leadhe spin flip of an electron upon its transmisstbrough the

202 Magnetic Resonance in Solids. Electronic Journal.8/(2004)



L.R. Tagirov, B.P. Vodopyanov

interface. Therefore, matricdd and i have a diagonal form with respect to spin. Theyetthe same matrix structure
as [ in Eq. (3). Taking into account the explicit foohGF given by Eq. (5), and matching the quasidtas$unctions

on both sides of the interface according to thecgdore proposed by Zaitsev, we obtain BCs for tiesiglassical
equations Egs. (9). Fop, <min(p/,p/,p°) (here, p; and p are the Fermi momenta of the spin-subbands of a

ferromagnet) it is convenient to represent theselitions in the matrix form

at = 1/2 §§ ai ~1/2
SR L4 I D
—-b a G. -

s (12)

W90 @l v a b

=)

ol g b

Heredi ="', b=74"', # andd are the scattering amplitudes at the F/S interfagg and the matri>{1/l,”“‘”>]1/2 is

the result of the direct product of the unit matnd ¢ . Let us pass in Eq. (12) to the functiopsand 5 using the
relations:

~8 Brd ~ S _ifrd =85 *MAS Ina
g>:CL2 >CL2 ag<:ClngL2: (13)
= g i < it 5 i
G-=¢ G-° G.—¢€ G..L s
Do =0./2= D

where 5, and j, are the scattering phases associated with théersegtamplitudes? and d at the F/S interface,
respectively. Next we pass to tljg(a) and aw matrices, symmetric (s) and antisymmetric (a) wdtspect to the variable

2
(14)

=

G>i/;<'

. - ~ 1
9.+ QAJ*/ G = 5{

N 1
9s(a) :g[

After this transformation the boundary conditioas ®e solved with respect to @gn) matrices and take the form:

(), = (3, @Di=@G0r
VR =R @D, = (i),
R, R @), = uldr), (15)
~&, =E.GDa+u(3)
G = WER.G)s + (50),,
where ﬁ@ =1/2 @f(a)iéf(a) , the (X*iu functions are determined in the same way. Indigesaind d denote the
diagonal and off-diagonal parts of the matricgs; = 1/2[T + 7.T7,] . The coefficientsa, equal
1+ R.R, ¥D.D_,

Q) = \/an+ ,_Rﬂ‘ s (16)

ayy =1-JRR,+D.D .

o V—a

If the interference of waves arriving from neighibgrinterfaces can be neglected, apddoes not depend op, the
boundary condition containing only the functign can be obtained:

6:51+52§:+5;53+545; =bs—bu 17)
5;51 + 525; + 5:5? + 515: = 51 - 52'

The b, matrices equal
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by = 5 g, +C~}’ 5;64 1757"_5:5?'

In this case, the system of BCs consists of EGH. §ihd the first equation of Egs. (15). Note thaydhe diagonal part
of the functions is continuous at the F/S interfaldeese BCs take into account explicitly the spépehdence of F/S
interface. Previously quoted boundary conditions tfee F/S interface can be obtained (if they are waimng) as

approximations, or limiting cases of our generakBEqs. (12)-(18).

3. Andreev conductance of an F/S point contact

3.1. Basic formulas for a point contact

We consider an orifice of the radi@gsin an impenetrable membrane as a model for thatpmntact. At zero
temperature, the expression for Andreev conduct&aazan be written from the following physical consit#ons. Let

us find the current in the ferromagnet pﬁ < ps,pf. Then, in the case of specular reflection from ititerface,
p, = p| sinf, = p sinf, = p° sinf”. The incidence angles of electrons, which can heréev reflected from the
interface in the spin-up subband, are determinenh fthe relationshippf sinf, = pf sin6, and depend only on the

parameterézpf/pf. Electrons incident at more slanted trajectorigd wndergo total internal reflection. The
problem becomes equivalent to the problem of figdihe conductance of a point contact of normal teetath
different Fermi momenta (in this case, they @fe and pf) when these metals are in direct contact. Usiegktiown
solution of this problem by Zaitsev (eq. (38") 27Y]), we find
2(, F)?
‘ e A
Grt(TZO):GLMv G, :&’ (19)
' 3(1+96) 4dr

whereA is the contact area. The equations@a(T = 0) obtained in [11,12] do not coincide with thésult. At6=1
(non-magnetic metal with equa{ and pf), the Andreev conductance equals the doubled 8haownductance, which

corresponds to the doubling of conductance asudtrelsAndreev reflection [1]. Let us now find arpression for the
Andreev conductance in the case of arbitrary trassion coefficients. We start with equation for #lectric current
in the linear approximation with respect to thectie field E = (£,0,0) . The current is calculated on the ferromagnet

side atz — O:

) :
I = ¢ hm[i—i]Tr T fd€+
©2m’—~'\0z Oz ' dmcosh’(¢/2T)

<J a6 B )7 -6 )}

(20)

.’1?1
Here, G is the retarded (advanced) GF, which is obtaimenh fthe temperature GFs (Egs. (1) to (5) by sulisti
e+ for ic, . Let us substitute representations given by Egj. (7) and (8) into Eq. (20). After performing the

Fourier transformation with respect to the- p° coordinate, we obtain the ballistic conductariee, of an F/S point
contact:

dPn
Gpg = T d
s ol f 5coshz(a/ZT f( (21)

~R

X\1= 3§79 = gl 9. + GGl - éT@]}
Now, we must solve the first of Egs. (9) with thEBgiven by Eq. (17). Whef is independent of the solution
to Eq. (9) takes the form

g, = "0 (p e T 4 O (22)
Matrices C , represent the values of GF- at large distances from the F/S interface:

. g ! g, —iA
o [—f* —g] el

23
IAY —e, (23)

Passing in Eqg. (22) to functiong , substituting them into the system of BCs giverBng. (17), and solving them in

the linear approximation with respect - = 1/2[¢" + &'] we find the Andreev conductaneg, of the F/S point
contact:
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A2 pa 1
A F/b< ) 47 fo c coshQ(E/'ZT) 24
y f dp” 4|A|2DIDT ( )
@n)’ 1+ JRR VA — 4R R ¢

It depends on the relationship between the Fermmemap, p;, and p*. Thus, atp| < p® < p/, the expression
for G, takes the form:

(25)

/2 . e
Xf a6 DD, jln(Z@L) -
v (Q+JRR) -4/RRx
In the case of a nonmagnetic metal, whigre= D,, the expression for the Andreev conductance obdain Ref.
[27] follows from Eq. (25).

3.2. Discussion of experiments on the Andreev spectroscopy
The ratio ofG, to Ggn, WhereGgy is the conductance of an F/S contact in the nbstade, is given in [4-8]. In our
approach the latter quantity is

2.0 ‘ .
Al pF Pepo T 427=5.5
(V= 0) = # [ d6,5in(20,)D, uspIAT
87 0 Qj A2T=02
/2 (26) s 10 ]
Ae’(p*) o S
+ o fdQNsm(Z@N)Dl' &£ 05t ST
0 L
Egs. (24)—(26) are valid for arbitrary transmissionefficients D,. For 0 ™02 o4 e 03 1o
particular calculations we use the model expressifum the transmission
coefficients corresponding to the direct contad¢tvieen S and F metals: Fig. 1. Dependence of the normalized
4 s 4 s Andreev conductance on the ratio
= Llsz’ D = LISZ (27) ¢ of the Fermi momenta of spin
(P +1.) (P, +p.) subbands of the ferromagnet's
: F/ F
With these transmission coefficientS(T = 0) andGg, can be calculated conduction band§ = p; /p; )
analytically:
c 2 " . "
AS(p*] (6¥ 1 +6Y) (Y)Y @ +6Y)

GF/N = (28)

6’

—— + —
1+6")y 148"y

for Ga(T = 0) the expression (19) is obtained. Heté,= p°/p and 6" = p[/p®. From Egs. (19) and (28) it follows that
the Andreev conductance &t< 0.26 becomes smaller than the conductance of the ¢anttiee normal state. Dependence
of the ratioGa(T = 0)/Gg On the parameteris given for various temperatures in Fig. 1. Tat@rA /2T = 5.5 corresponds

to the experimental conditions [5] € 1.6 K,Ay, = 1.5 meV). In order to interpret universally #heerimental data obtained
in [5] for a series of ferromagnetic materials ontact with superconducting Nb, we fixed the Femaimentum of the

2 72 72
- [pT ] + [pl ]
the value of the reduced conductance at zero wk&goss the contact (ordinate). Emphasize thttisncalculation we

assumed absence of an oxide or similar barridneaFtS interfaceZgr = 0). The estimated results férare given in the
Table.

superconducting metal by the equat[@ﬁ] = const. Now, the values éf(abscissa) can be estimated by

1
2

Table
Material under ) P (%) P (%) [5]

study [5]
NiFe 0.64 42 37+5.0
Co 0.55 52 42+2.0
NiMnSb 0.48 63 58+2.3
LMSO 0.31 83 78+4.0
CrO2 0.18 94 90+3.6
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20 ' ' N Note that our valuesi(Ni)=0.64 (from data of Ref. [6]) and
BN ol ons 5(Co) = 0.55 obtained from the Andreev spectrosdnpyed out to be close
B 1 to the upper estimates fo(Ni) = 0.64 andj(Co) = 0.57, which we obtained
< in Ref. [28] from the data on the giant magnet@tasice in magnetic point
T 1 contacts [29].
o Let us now compare our results with the originagimeges of polarization
e 03 N ] obtained in [5] (see the last column of the Tabléje authors argue that the
00 normalized conductance measured in their work dipesn polarization as

00 02 04 » 06 08 10 G,,/G, =21-P) (Egs. (4)6) in [5]), where, = (I, —I1,)/(I, + I,) and
Fig. 2. Dependence of the normalized:, ~ G/ , is the conductance at high voltages across thaatdal’ > A). In
Sglgrr?ze;tigcr)lnguctance on the conta%e course of discussion, the authors identifiedctirrent polarizatioR, with the
contact polarization?, = (N,v{ — Nv/)/(Nv{ +Nw/)=(1-68)/1+6),
where N, andv, are the density of states and the Fermi velagitipé o -spin subband of the ferromagnet, respectivelys Thi
identification is not quite correct, because itlinily assumes independence of the total curdent I, through the contact in

the normal phase from the spin polarization oféh@magnet. It is evident from Eq. (28) tkty essentially depends onAs a
result, the reduced conductar@ggy (V = 0)/Ggy is the nonlinear function of the contact polditraP, (Fig. 2). It is seen from
Fig.2 that identification o, with P, leads to a systematic underestimation oRthealues extracted from experiment (compare
the third and the fourth columns of the Table).eNloere, that numerical calculations of the condigetat zero voltage per-
formed in [13] (see Fig. 4 of that work fé= 0, T/T, = 0.2) fit well the linear dependence on the adralarization proposed in
[5] (dash line in our Fig. 2). From this observatitfollows that calculations made in [13] alsgegunderestimated values of the
contact polarization taken from the conductanaeiat voltage. Our theory allows to estimate thanxation parameterof the
ferromagnet’s conduction band, through which tharfation of the density of stat€gog the tunnelling polarizatioRy, and
the contact polarizatioR, are expressed. Our analysis of experiments one&mdspectroscopy leads to valuesPpfthat
systematically higher than those estimated prelyious

4. The superconductor - strong ferromagnet proximity effect

The ferromagnet-superconductor contacts are ititggesot only as a tool to measure conduction baoldrization of
ferromagnets, but also as a unique combination atemals to buildr-contacts [30] and superconducting logic circuits
[31,32]. The physics behind thecontacts is the unconventional Larkin-Ovchinnilkade-Ferrell (LOFF) pairing in
ferromagnetic superconductors [33,34], which matsféself in F/S contacts by oscillations of thpeyconducting transition
temperature [35,36], tunnelling density of statg®],[ Josephson current [38-41] as a function o&yed thickness or
temperature. The realization of the LOFF-like mariin weak ferromagnets (ferromagnetic alloys hgviow Curie
temperatures ~100 K) is certainly proved [32,3Z4BpP, The case of the contacts of superconductoth wirong
ferromagnets, like Fe, Co, Ni, is still questiomaldh fact, there are calculations of the locahaling density of states
[21,22] and the superconducting transition tempegaf22], which do not predict oscillations of taeove mentioned
quantities, if the ferromagnet is clean (with méae path much longer than the pairing functiorillasion length). Direct
experimental verification is very difficult, becau®ne needs ultra-thin, few monolayers thick, feagnetic films of
excellent quality. In the section below we shovat tin the case of clean enough ferromagnets ttieatriemperature still
oscillates as a function of the F-layer thickness.

4.1. Boundary conditionsfor the" dirty" superconductor - strong ferromagnet bilayer
To find quasiclassic Green functions at the F/8rfate one needs to solve the Eilenberger-typetiemsa(9) for the
every metal in a contact. Near the transition teemoee the equations can be linearized with resfpettte anomalous

Green functionj™"":

0 fﬁ(l’“)
~s(r) _ _Ea Tt ]?S(F); F5(F) _ on I (29)
‘ n ‘ _flT 0
Then, the first of equations in (9), applied to siiperconductor homogeneous in the plane of theachomeads
2
2 8658 PO N < 7 >= 20 TA,
.5 (30)
8](‘ S ~8
I, === X sgn(e,)7, [,
B 8x a

where I =| v’ | 7° is the component of the mean free path along trenal to the contact plane. Analogously, we
deduce the equations to find Cﬁf and fr for the ferromagnet:
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2 ¢
leTlll 0 ~F ( I‘)Qj,F _ Z\IDAI'TUII - )\I‘ _f
N e R (31)
f. =—sgn(e,) P2 ifr
¢ (ZIT + ll‘l) 6
where
‘ 27.7,(v,, +v,,) 2,
AN =1 LR e i (p — p, ) sgn(e,),
Ly +1, Ly +1,
(32)
<Litsoe p” i
Ty «/ 1 Va)

In the abovel,, =|v" |77, 7" is the mean free path in the-th spin-subband of the ferromagnet. In the sedimred

«

of (32) the angular integration is constrained [@2fulfil the specular scattering condition:
= pf sinf, = pTF sinf, = p° sing’. (33)
In Egs. (31)-(33) and hereaftpf and pf are the Fermi momenta of the spin-subbands détlemagnet.
Solution of Eg. (30) with the boundary conditiﬁﬁ(z — o0) = 0 reads:
Fl(@) = sen(e,)r, f(@)

Sen X (34)
+ f dée 7 < Fl&) > 2 A©)]

In the equation (34) the integrand in the squanerntheses has the spatial range= (D°/27T)"* > I°, where
D*® =4°1°/3 is the diffusion coefficient of electrons in a saponductor. Expanding the slow varying functioausrd
the point¢ = z and taking it out of the integral we obta}ﬁ(x) :

Fl@) = sgn(e,)r, () + 33 [1+z AS - )< Pla)>. (35)

Solution for the ferromagnet is sought in the form:
Fl(@) = 0" (8) coshw” (8))(z +d"), (36)
where
K'(0,) = 5y (6) + isgn(e, ), (6,),
Ly +1, v, +v

e s 37)
2,1, 2v,0,,

lTF + llr
FF
il

Ry (0) = (1—m,)

hZF(al) :‘ Par = Py ‘ +1,

In the equations (37), the quantitigs and ;, do not depend on the anglés and ¢, . As in the above Sections we assume

pf > pf . Substituting the solution (36) into the equa(i®h) one obtains the integral equation to fipdand », :

N, +1,
F_F fdp” I3 (lT .ll) cyvaviinls (38)
P (A ) (, n +1, 1) (ZZ..-TZ..-l) (k")
For the strong ferromagnet the solution of the abequation is (the relative accurac;{rjmi;lf]f1 <1):
dp; 1
f I p, =0 (39)

B pl pr 27 1y +1,
Satisfying the boundary conditions (17) we obtﬁyﬁo) and jf(o):
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I d

A8 B
R B RIACE

VDTDL [ ls d

ral D
' A\ dx

(40)

~S

< f(z) >,

f:(()) = —2sgn(e,)T,

where

s
B_F

rs D+D+f JR )V @D
r=201+ [RE +0- [REW |
p_ A, L)

21,,1,,k" tanh(x"d")’

In deriving the above equations we neglected sppeddence of the phases of the scattering ampditindthe general
boundary conditions Egs. (17).
To formulate particular BC for the contact of aosty ferromagnet with a dirty superconductor we theeAnsatz

proposed in Ref. [43]: at distances of the ordathefmean free pattf/lf = 2.5, in a superconductor, when the terms
proportional to¢* /&), = 0.25 and ¢* = (D°/2xT,)"” can be neglected, one may write down

<cos(t9 > f do® sin(26° )f = (42)

whereT, is constant. This constant can be found substgutito Eq. (42) the antisymmetric combination

A8

s d S
"= —7,8gn(e P — < F >,
fa T:88 (71)1 dz fﬁ )

which corresponds to the solution of the Usadelatiqn [44] for the "dirty" superconductor far awépm the F/S
interface. The result is:

~S 1 S d ~8
=—7.8gn(e )—I"—< f >. 43
¢ =—f.sen(e) Sl <, (43)

Now, we calculate the same constant with the ugbeofunction ff(o) taken from the equation (40) above, and

obtain the boundary condition for the averaged dversolid angle GFﬁf(m) =< fs >

d .5
P — @) = vpl(a), v =
dx I (44)
=3 f " 46° sin(20°)B, 7, = > f " d9° cos(6°)sin(26°)B.
! 2Jo b2 2Jo

The upper limit in Eq. (44) depends on the relatimween the Fermi momenta of contacting metald, ian
determined from conservation of the parallel congmarof the transferred momentum (33). If the Femomentunp®

is the smallest of thregf = z/2. The quantityB is determined in Eq. (41), it is a function of thegles6® and 6,

which obey the scattering specularity condition)(3he boundary condition (44) is valid for thetdisuperconductor -
strong ferromagnet interface at arbitrary transpaye

4.2. Critical temperature of F/S bilayer
To find the superconducting transition temperatlizeof the bilayer we solve the linearized Usadel ¢iquaat
temperatures close :

s &
da’

and satisfy with this solution the boundary comxiti(44). The problem is easily solved in the singlede
approximation [45], which is valid at intermediatepessions of; against unperturbed transition temperature of the
isolated superconducting filri:

s 2iA f

P, = e 4D A = Agcos|’(z —d”)] (46)

D Pi=2le, | pF = 2A, (45)

where x® is determined from BC (44):
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Irk® tan(k’d®) = ~. (47)
Substituting (46) into the self-consistency equatio
Am(t) =T, 3 [z‘ﬁf -2 ] = (48)
n=—00 ‘ Eﬂ | 710

one finally gets the equation for finding the triéina temperature of the dirty superconductor ety ferromagnet
bilayer:

In(t,) = \I/[%]—Rc\lf[%+tﬁ], (49)
_ DS (I{S)Z
p a 471']10 ‘

4.3. Results and discussion of proximity effect
Upon solution of the equation (49) we will negldependence of”® on ¢, , because we consider strong ferromagnet with

energy of the exchange splitting of conduction bahith is much larger than the thermal energy. Awas done in the
discussion of experiments on Andreev spectroscayfix the Fermi momentum of the superconductorth®y relation

512 r? F?
[p ) :%[pT] +[p1,]
The results of calculations for the set of paramsetel = p//p/ =0.65, pl| =40.0, I/l =25,

&) =025 [¢° =(D*/2xT.,))"* — is the coherence length of dirty superconducéog displayed in Fig. 3.
The parameters approximately correspond to theacordf nickel with niobium or vanadium. The figushows
damped oscillations of transition temperature agumaction of the ferromagnetic layer thickness. Aset
superconducting layer becomes thin enough, thentexet behavior of the superconducting transitemperature
is possible (the lower, solid curve on Fig. 3), ethhas been observed in the experiment [46,47].r€kalts for

the another calculation with only the exchange tepfi parameter is changedézpf/pf = 0.55 (this

corresponds approximately to cobalt), are displaye#ig. 4. Comparison with the previous figure sisothat
superconductind, suppression is weakened in the contact with thenger ferromagnety(Co) <J(Ni)), which
seems to contradict expectation. However, one shé&ekep in mind that when conduction band polarorati
growths, the interface transparency decreasesrasudt of increasing mismatch between Fermi momentthe
superconductor and the ferromagnet. Growing isohatf S and F layers dominates the increase ofidapga
influence of the exchange field. This scenario baen realized in the layered systefa, V, . /V [48]. With
increasing the iron content: in the ferromagnetic alloyFeV, . the non-monotonic behavior of the
superconductor critical thickness was observedxadfthickness of the ferromagnetic layer. The puoa layer
suppressed’, weaker than the alloy with the iron concentratior~ 0.6. Our calculations take into account
explicitly the dependence of the interface transpay on the conduction-band exchange splittingjngivthe
theoretical basis for the extensive discussionshefF/S interface transparency based on the expetah data
[42,46-49]. Our results do not contradict conclusidy Bergereet al. [22]: Figs. 1 and 2 show that at sm@jl

suppression, whefl,, — T, < T,,, and for d" > lf, the oscillations amplitude is considerably smatlean the

= const , and use the above formulas (27) to evaluatentbeace transmission coefficients.

asymptotic value of the suppressioél] =T, — T.(d" — o) (see upper curves in Figs. 3 and 4). Thus, the
oscillations ofT, are beyond the approximation adopted in Ref. [22].

1.0 . . . . 1.0 T T T
X LG/ 4=5T5 g - d,/ =575

08 L ,.dS”‘:.z'T 1 08 d./é =27
osl] osff

E_‘E - ha :

~ ~

o 04 d. /=205 1 W 04r
0.2t ] 0.2} d, /£ =205 ]
R 1 O =

0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 X 0.6 0.8 1.0
a7’ a1’

Fig. 3.Dependence of the superconducting critical tempee Fig. 4.Dependence of the superconducting crit
of F/S bilayer on the thickness of the ferromagr temperature of F/S bilayeon the thickness of tl
layer ato = 0.65. Values of other parameters are gi ferromagnetic layer ats = 0.55. Values of othe
in the text parameters are the same as in Fig. 3
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It interesting to note, that at certain thicknekthe F-layer the decrement ©f oscillations decay does not increase
when decreasing the mean free pathsas it could be expected, but decreases. Thisuahbghavior is explained by

exclusion of slanted trajectories, along which pla¢h of electrons inside the ferromagnetic fiimemds their mean free
path. In the certain range of the thickndSshe effect of closing the cone of effective trajeies, which couple F and S
layers, dominates over their decay because otsicaft As the thickness dF approaches mean frés,ghe cone of effective
trajectories collapses toward the film normal, soldition of the problem approaches the single-esptied one [42].

5. Conclusion

In this paper we summarized results of our thecaktstudies of the contacts of superconductors sitiong
ferromagnets. On the basis of microscopic appraeehderived for the first time the Eilenberger-typguations of
superconductivity for metals with exchange-splihdoction band. The equations are valid for arbjtizand splitting
and arbitrary spin-dependent electron mean fre@spaiithin the quasiclassic approximation. As a ngbep, we
deduced general boundary conditions for the abawsateons. These BCs take into account explicitlg 8pin-
dependence of F/S interface transparency. All ottwrect formulations of the boundary conditions the F/S
interface can be obtained as approximations, datifigicases of our general BC.

We applied further our theory for the Andreev reflen at F/S interface and derived an original espion for the
Andreev conductance. Our expression takes intoustaexplicitly spin dependence of the interfacegmarency and
spin-dependent conservation laws at scatterindp@iriS interface. Based on the experimental datapancalculations
we give estimations of the conduction-band spinapphtion for series of ferromagnets in contact hwit
superconductors.

Next, we considered the superconducting proxingtycontact of strong and clean enough ferromaggiettfon
mean free paths much longer than the oscillatiomo@eof the pairing function) with dirty (short medree path)
superconductor. We showed that supercondudiireg the F/S bilayer oscillates as a function of Ehlayer thickness.
At small enough superconducting layer thicknessrédentrant behavior of superconductivity is préstic The theory
takes into account explicitly the spin dependentdhe interface transparency, which results in nwmotonic
dependence of the superconducting layer critidakittess on the spin polarization of the ferromaignietyer. These
unconventional and distinctive features of the pi&imity effect fit qualitatively experimental obxvations.
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