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Simulation of Rabi oscillations in random clusters
of spins deposited on spherical surface
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The study presents results of first-principles modeling of spin dynamics in disordered ensembles
of impurity-induced magnetic moments in a carbon spherical structure near 1% concentration of
magnetic centers. Averaged signals of Rabi oscillations and their spectra are evaluated using a
numerical algorithm based on direct calculation of quantum eigenstates. The Fourier spectrum
includes a strong peak around the Rabi frequency and an additional rise in the low-frequency
interval. Both peaks demonstrate the standard broadening proportional to the dipole interaction
energy. Low-frequency oscillations are observed only for random spin clusters, while regular
structures do not produce such dynamics. This effect results from quasi-periodic spin dynamics
caused by random distances between particles and, correspondingly, the realization of a set of
incommensurate eigenfrequencies in the spin dynamics. Thus, the low-frequency part of the
spectrum can be used to characterize spatial disorder in ensembles of spin clusters.

PACS: 67.30.hj, 67.80.Jd, 61.48.+c

Keywords: simulation of spin dynamics, Rabi oscillations, magnetization, spatial disorder.

1. Introduction

In the field of magnetic resonance, doped carbon nanostructures [1,2] are novel and promising
material for analysis. The properties of these materials can be controlled by growing single-
domain metal cores within the shells or by depositing magnetic ions on the carbon surface [3-5].
Numerical studies based on density functional theory as well as experiments show that the
interaction between the electronic shells of dopant ions and electrons in the carbon lattice induces
strong effective magnetic moments due to local change in the m-orbitals of carbon. Their values
are close to the Bohr magneton up [6,7]. An indirect exchange also exists in doped carbon, but
it decays rapidly due to strong screening and has negligible effect at relevant distances [8,9].
One of the perspective examples for such studies is the composite of hollow carbon nanoshells
3-5nm in size [10-12], doped by magnetic ions, e.g., H, N or F. Typical dopant concentration
can reach up to 1% or even more, which is much higher than in usual EPR experiments with the
concentrations 0.01-0.1% [13,14]. This determines a characteristic distance between effective
magnetic moments induced on sphere about of 2-3nm, and the dipole energy on the order of
108 eV. Therefore, modified carbon clusters can be considered as the disordered magnetic with
large density of spins. This opens the way to determine disorder parameters from resonance
data at high intensity of magnetic interaction, in contrast to the known NMR and NQR studies
of disorder in weakly-coupled rarefied systems based on chemical shifts analysis [15,16]. A
few recent studies shows that exploration of system disorder is also effective through the Rabi
oscillations of longitudinal magnetization, because they are high-sensitive to variations of the
local magnetic fields [17,18].

Properties of similar spin structures are tough for analysis because of high density of the
magnetic moments and significant interactions. The perturbation theory [19] and method of the
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moments [20] are inapplicable here. Numerical simulation allows overcoming this difficulties.
One of the first known implementations was developed by Henner and Shaposhnikov [21,22].
First, they evaluate the diagonalizing operator for the Hamiltonian matrix by rotation methods.
Then, transition probabilities under a continuous radio-frequency transverse field are obtained
from perturbation theory, and a histogram of resonance spectrum is built. Another known ap-
proach is based on the approximate evaluation of the time-dependent density matrix [23-25].
A highly detailed realization of this method is developed by Kuprov’s group in the SPINACH
software [26]. To avoid full matrix evaluation, the software transforms the Hamiltonian and
perturbation matrices into block-diagonal structure by excluding the less-probable transitions
between system eigenstates. Direct solution of time-dependent Schrodinger equation with non-
stationary fields is also applied for the spin decoherence analysis and Rabi problem [13]. This
is one of the most flexible methods. However, conservation of the wave-function norm as well
as operators unitarity require special numerical approaches with strict control of numerical pre-
cision increasing computational costs [27,28]. Recently, a novel numerical method has been
implemented and validated. It builds the time-dependent wavefunction and observables from
exact stationary pure states of the spin cluster [29]. An accuracy of their evaluation is limited
by only machine precision. Although the method works only with time-independent Hamiltoni-
ans, it can be used for simulation of magnetic response under adiabatic perturbations without
additional simplifications. Moreover, it allows consideration of harmonic non-stationary field
using a rotating reference frame.

Despite the diversity of approaches, evaluation of large-scale quantum problem needs huge
operators. For N particles with spin 1/2, the dimension of spin and Hamiltonian matrices is
2NV 2N At large N, direct evaluation is impossible even with modern hardware without specific
approximations and operator truncation [26]. As an alternative, the averaging method can be
applied to systems with the random distribution of magnetic centers. It evaluates resonance
signals for a large number of independent small clusters with random spatial distribution of the
particles, and builds the mean magnetization and its spectrum. If the number of random realiza-
tion is large enough, the mean simulated signals match observables in macroscopic ensembles of
magnetic clusters [13,21,22]. The averaging method is confirmed by known experimental results
for free induction decay as well as Rabi oscillations in diluted compounds, like CaWO4:Yb3*,
CaWO4:Er3t and MgO:Mn?* [13,30].

Previously, the stationary states approach [29] had been used for the analysis of free induc-
tion decay of transverse magnetization in ensembles of randomly distributed magnetic moments
in a cubic lattice [31]. The FID problem has also been evaluated by this method in regular
structures, e.g. linear chains, cubic, and ring clusters of spins [32-34]. In the latter cases, nu-
merical results for single clusters were successfully verified by the theory of moments. Simulated
signals of transverse magnetization are in good agreement with the empirical trial functions
given in literature [20,35] and with the experimental data where comparison is possible. On
the other hand, averaging over an ensemble of independent clusters with different magnitude
of dipole interaction exhibit a direct transition from oscillating signal to monotonic transverse
relaxation [31]. Overall, these results confirm the developed method for spin dynamic problems.

In the current study, we present first-principles numerical simulation of Rabi oscillations in
clusters of magnetic centers randomly deposited on a diamagnetic sphere in the rotating reference
frame with concentration near 1%, using the exact evaluation of stationary eigenstates. Common
features of the mean signal and spectra of the dense random spin ensemble are established and
analyzed by averaging over a large number of independent random spatial distributions of the

2 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25305 (12 pp.)
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spins.

2. Simulation of Rabi oscillations in disordered spin clusters

Thus, we consider the spherical carbon nanocluster doped with magnetic ions, e.g. H, F or
N [10,11]. The dopants are randomly placed on the carbon surface (Figure 1). In the numerical
implementation, the azimuthal and polar angles of the dopants are set as random variables with
uniform distributions in the intervals [0, 27| and [0, 7], respectively.

Figure 1. Schematic image of magnetic dopants are randomly distributed on the spherical carbon nanos-
tructure.

We assume that all particles in the cluster have equal spins S = 1/2 and identical gyromag-
netic ratios . In the general case, the dimensionless Hamiltonian of the system is as follows [20]:

H al 1 3
T —ez;Sj +de§<;€ - (Sj - S — @(Sj “Tik) (Sk - rjk)) : (1)
where wg = vHy is the Larmor frequency in stationary magnetic field Hy = {0,0, Hp}, hwg is
the Zeeman energy of particles, S; is the spin operator of j-th particle, r;j is the radius-vector
between particles j and k, e, is the unit-vector of z-axis, and py is the relative intensity of dipole
interaction:

o Edip o h272 (2)
B EZeeman B a%(mo)

Here, ag is the characteristic distance between particles. It determines the magnitude of dipole

Pd

interaction. Therefore, we refer the geometrical size of system and coordinates of the particles to
this parameter. The vectors rj; are also scaled to ag. In addition, all energies are scaled to the

Zeeman energy, and time is measured in units of the inverse Larmor frequency, i.e. [t] = wy L

The external magnetic field includes a constant term Hg, whose direction defines z-axis, and
a transverse oscillatory part Hy. Without loss of generality, the transverse field can be described
as rotating with frequency §2:

H;, = H; {cosQt,sinQt,0} . (3)

In the reference frame rotating with frequency €2 around z-axis, the field (3) becomes constant.
Thus, we can use a stationary Hamiltonian in the effective field. There is also a well-established
transformation of the longitudinal field component [20]:

Q
H = (Ho - ) e. -+ Hye,. (4)
o
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If the rotation frequency 2 exactly equals the Larmor frequency wy, the longitudinal component
vanishes, and the eigenstates structure and their evaluation are simplified.

Additionally, the non-secular part of the dipole interaction in (1) should be omitted in the
rotating reference frame. Therefore, we use the truncated Hamiltonian:

3 20
hle +pdz 2t (35557 — S 8y) (5)

where 6, is the polar angle between rj; and field Hy, and hy = Hy/Hjy is the relative strength
of the transverse field.

Full matrix of the Hamiltonian is built from the spin operators represented by tensor prod-
ucts [25]

1
S;=I®le a0 -alal (6)

where [ is the identity matrix of 2 x 2 size and ¢ is the vector of Pauli matrices placed at the
j-th position in the operators product; spin is normalized to A. After calculating the eigenvalues
E; and eigenvectors |¢;) of the Hamiltonian, the algorithm expands the initial state [¥(0)) over
the eigenvectors and evaluates the time-dependent wave function [29]:

W (t)) = Cjexp(—iEjt)|p;), Cj = ((0)|g)). (7)
J
In the current problem, the initial state is an adiabatically prepared inverse z-polarization of
spin cluster, M*(t =0) = —

Finally, the longitudinal magnetization is evaluated using the standard relation:

ME(t) ~ (W ()57 W (1)) (8)

The rotation frequency of transverse field is wyp, resulting the spin resonance and Rabi oscillations
of magnetization with frequency wg = vH;y. M?*(t) remains unchanged when returning into the
laboratory reference frame.

The algorithm is implemented in Python language using NumPy and LAPACK numerical
libraries [36]. It should be noted that there is a strict limitation on the spin ensemble size,
because the matrices dimension grows as 2V. Our hardware permits handling up to N = 14
particles, but most simulations were performed with N = 10 — 12 as a compromise between
system size and computation time.

3. Numerical results

Each random configuration of magnetic centres on the sphere leads to different magnetization
dynamics and spectrum structure. Since carbon samples consist of many spheres, the total
magnetization can be obtained by averaging the simulated signals [21].

Figure 2 shows the evolution of the longitudinal magnetization of spin ensembles with differ-
ent IV averaged over 100 to 1000 configurations, with varying magnitude of dipole interaction.
Figure 3 displays their averaged Fourier spectra.

The total magnetization exhibits a monotonic decay which described well by an exponential
law:

M(t) ~ cos(wnt) exp (—;R) | 9)
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Figure 2. Simulated mean Rabi signals for N = 10, 100 random configurations with varying interaction:
(a) pa = 0.01, (b) pg = 0.025, (c) pg = 0.05, also for pg = 0.05: (d) N =8, (¢) N =10, both
include 1000 random spatial structures, and (f) N = 13, sum of 150 configurations.

1 is a characteristic damping time, close to the spin-spin relaxation time

where T ~ (wopg)™
T5. The exponential decay appears even with a small number of random realizations of cluster
structure. Adding more realization only smooths the signal. Nevertheless, variations in the local
dipole field leads to changes in the observed signal and spectrum (Fig. 3). Decay time depends

on the dipole interaction magnitude, while the Rabi frequency is determined by transverse field.

In common, this result agrees with simulations of Rabi oscillations as well as experimental
data for diluted magnetics reported in literature. For example, we consider CaWO,:Er3t under
a 1 mT microwave field (Rabi frequency 55.96 MHz); the static longitudinal field sets the Larmor
frequency at 9.7 GHz. These reference values were used by de Raedt [13]. The Er3* ions have
a high-anisotropic gyromagnetic ratio, that is 1.25 and 8.38 in aa-plane [37]. Referring the
characteristic dipole parameter to the lattice constant ag ~ 0.543nm, we get pg = wgip/wo =~
0.033. The dimensionless magnitude of the transverse field is hy ~ 5.77 - 1073.
magnetization evaluated in dimensional time (Figures 4,(a), (b)) show good match with known

Examples of

experimental results [13,30]. Figure 4(c) illustrates Rabi oscillations parameters in a fluorinated
carbon sphere on a dimensional time scale, for comparison. In that case, the distance between
magnetic centers is 0.2 —0.3nm (concentration is 1072), and their magnetic moment is pg. This
yields a high pg =~ 0.45, leading to much faster relaxation and a typical exponential decay signal.

The averaged spectrum of a diluted material contains a single resonance line at the Rabi
frequency. As expected, it is broadened proportionally to the dipole-dipole interaction parameter
pq. The height of the main peak also decreases proportionally to pg due to stronger oscillation

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 8, 25305 (12 pp.) 5
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Figure 3. Mean Fourier spectra of Rabi oscillations for N = 10, 100 random configurations with varying
interaction: (a) pg = 0.01, (b) pg = 0.025, (c) pg = 0.05, also for pg = 0.05: (d) N = 8,
(e) N = 10, both include 1000 random spatial structures, and (f) N = 13, sum of 150

configurations.
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Figure 4. Simulated mean Rabi signals for N = 8, 100 random configurations, in dimensional time scale
corresponding: CaWO4:Er3* | concentration is (a) 1074, (b) 1073, and (c) magnetic moments
induces by F atoms deposited at carbon sphere 5nm in diameter, concentration is 1072,

damping, which corresponds the signal shape. For small N, dipolar splitting of the main peak
can also be observed. However, spectra obtained of dense disordered spin clusters show a
significant contribution of low frequency oscillation. For py = 0.05, the peak height at zero
frequency is comparable to that of the main resonance line. This arises from a superposition of

slow harmonics present in every random cluster configuration.

This effect is not observed in the spectra of regular spin clusters, particularly elements of
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the square lattice (Figure 5). These regular structures exhibits typical signals close to empirical

1 (@ 08 (b)

M., arb. units
S

2
— Simulated signal
— Abragam's trial 0.1
-1 ‘ ‘ 0 ‘ ‘ ‘
0 100 200 0 1 2 3
t, 0, /oy

Figure 5. Example of Rabi oscillations with an empirical envelope (a) and its spectrum (b) for 9 particles
in square lattice with p; = 0.025.

approximations described in literature. For example, Abragam’s trial function [20]

a’t?\ sinbt
M(t) ~ exp (—2> o (10)

corresponds well with the signal of a square lattice element. The given example with pg = 0.025
has a = 0.0042 and b =~ 0.087. The empirical envelope fits the simulated magnetization up to
t ~ 100. After this point, the signal appears a beating between two close frequencies. This is
supported by two strong peaks in signal spectrum around the Rabi frequency (see Figure 5b).

4. Analytical estimates and discussion

Before discussing possible reasons for the low-frequency rise in the spectrum, we consider the
solution for Rabi oscillations in a system of two spins. There is a significant difference between
the structures of Hamiltonian matrices for free induction decay and Rabi magnetization reversals.

For free induction decay in the laboratory reference frame, the Zeeman energy operator is
represented by the pure diagonal matrix S?. For two spins it is as follows:

1.0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

SZ: 5 pr— 5 pr— 5 pr— 5 pr— 11
6 00 0 1) 0 lp2) 0 |l3) ) |0a) 0 (11)
0 00 1 0 0 0 1

It has a simple structure of eigenvectors. States g9 and @3 are degenerate with common energy
E5 3 = 0. Adding of the dipole interaction lifts the degeneracy, causing state mixing:

) = ji(w T los)),  Ids) = ji(w ~los)). (12)

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 8, 25305 (12 pp.) 7
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In constast, for Rabi oscillations the Zeeman term is defined by the matrix S¥:

0 1/2 1/2 0
1/2 0 0 1/2

5= /2 0 0 1/2|°
0 1/2 1/2 0 a3)
1 1 1
110 1] 1 1|1 1] -1
lp1) = ﬁ o |’ |p2) = \ﬁ 1 lp3) = AERE lpa) = 2| 1
~1 0 1 1

The off-diagonal terms of S* produce a more complex structure of eigenstates and mix different
frequencies within the total magnetization (9).

Moreover, there is a competition with the dipole part of Hamiltonian (5), where diagonal
operator S%S% dominates:

ﬁdip - ) (14)

O O O =
.
—_ =
[
—_ =

_ o O O

where f = 1—3cos? 5. In the general case, analytical formulas for eigenvalues and eigenvectors
of the full Hamiltonian are large even for two particles. Nevertheless, it can be simplified because
of small pg:

El’d—l—i, EQZO, EgZT, E4%1—7 (15)

the energy values are expanded up to linear order in the dipole parameter. The corresponding
eigenstates are as follows:

1 1 1
T W 1 1 |o R
1) ~ o o | |p2) = -1 lp3) = 7ol e~ | Ly | "
1 0 1 1
Aizlii%i

The initial state of inverted M? is given by vector |¥(t = 0)) = (0,0,0,1)", therefore the
expansion coefficients C; (see (7)) are as follows:

1 1 1

(17)

Thus, three of the eigenstates (16) contribute equally to the full wave function (7) and the
observed magnetization (8). Finally, M*(t) for N = 2 in the small py limit becomes

MZRr_o(t) = Ay cos A_t + A_ cos A\4t. (18)
For example, if the spin pair is along z-axis (612 = 0) with pg = 0.05, the energy levels, wave

8 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25305 (12 pp.)
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function and magnetization are as follows:
E1 =~ —-0978, FE=0.00, FE3=0.05 FE4=1.03,

0.23 exp(—iEyt) — 0.5 exp(—iEst) + 0.27 exp(—iE1t)
—0.25 exp(—iEat) 4+ 0.25 exp(—i E1t)
—0.25 exp(—iE4t) 4+ 0.25 exp(—i E1t)

0.23 exp(—iFEyt) + 0.5 exp(—iEst) + 0.27 exp(—iE1t)

MZF_o(t) ~ 1.08 cos(0.93t) + 0.92 cos(1.08t).

V(1)) =~

The elements of the wave function consist of a few eigenstates. For free induction decay, the
eigenstates are not mixed, and each element of [¥(¢)) includes only one exp(—iEjt).

Thereby, the leading terms of the longitudinal magnetic moment of two spins in the rotat-
ing reference frame include only two harmonics around the Rabi frequency with a dipole shift.
No low-frequency terms appear. Nevertheless, we assume that low-frequency dynamics is deter-
mined by the off-diagonal terms of S* and H dip operators in higher dimensions. Direct evaluation
of the wave function and magnetization shows that the energy spectra of random clusters include
several closely spaced levels. Transitions between these levels produce terms cos(wgpgt) in the
magnetization signal. Since a random cluster can be considered as a set of spin pairs with vary-
ing interaction, every specific spectrum has a few peaks near zero corresponding to these pairs.
A few examples are shown in Figure 6. Averaging the signal spectrum over a large number of

8 4 44
2 21 21
=} =} =}
=] =] =]
26 < 23 < 2 3 <
E | E 5 : |
S ’ S 3 s
g, | ~ g | ~ g | ~
3 6 O
S 2 S S
0 0 T O\’/ﬂ w
0 1 2 3 0 2 3
o/og o/og
8- 6 10+
£ 1 2
5' g 8’ g
26 e 28 S
g 4 < g ; S
¥l 3 © ] 3
8 4 3 = s =
—~ /-_: 4
=2 1 =
0 0 ‘ 0 :
0 1 2 3 0 2 3

/0y /oy /oy

Figure 6. Examples of the Fourier spectra of Rabi oscillations for p; = 0.05 and 10 particles for random
realizations; insets exhibit the magnetization evolution corresponding each spectrum.

spatial configurations smooths the spectrum and produces a visible rise near zero frequency in
the total spectrum (see Figure 3). These additional peaks occur due to strong irregularities of
the eigenfrequencies in random dense clusters, while in regular cluster all of them are localized

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 8, 25305 (12 pp.) 9
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near wp. Spectral variations are well-illustrated by the “zoo” of possible signal waveforms (see
Figure 6), which have a rather different time scales. Increasing the number of realizations (see
Figure 2) enhances the smoothing of the mean signal and spectrum, making statistical analysis
of disorder possible.

In addition, when the spin cluster includes randomly spaced particles, the interaction terms
also have random magnitudes. In the general case, this produces a set of incommensurable fre-
quencies. Therefore, quasi-periodic motion arises here, in accordance with the general principles
of nonlinear systems theory [38]. The continuous Fourier spectrum of such regimes shows that
they can be considered as a form of noise. The spectrum of spin quasi-periodic motion exhibits
the same rise near zero as we observe in our simulations [39]. On the other hand, regular spin
clusters do not enter such dynamic regime, because the main eigenfrequencies in regular lattice
are rationally related. In that case, the system’s motion always remains periodic.

5. Conclusion

We performed a series of first-principles numerical simulations of spin ensembles randomly dis-
tributed on spherical nanostructures under the oscillating transverse field. In the rotating refer-
ence frame, Rabi oscillations of longitudinal magnetization are observed. Every unique random
spatial configuration of the spin cluster produces irregular signals and spectra. However, the
magnetization averaged over many configurations shows a smooth decay close to exponential,
characterized by the time Tg ~ T5.

The averaged Fourier spectrum, besides the broadened peak at the Rabi frequency, shows a
rise near zero frequencies. This effect is not observed for spin clusters with regular structures.
Excitation of low-frequency spin dynamics results from cluster disorder. Dipole interactions
between randomly deposited particles produce multiple incommensurable eigenfrequencies, so
the spin cluster enters a quasi-periodic regime with many low-frequency harmonics. Thus, the
current study has a fundamental interest in the field of chaotic dynamics of quantum spins.

Additionally, first-principal modeling provides a basis for disorder analysis in spin systems.
The shape and fine structure of the main peak and zero-frequency rise in the spectrum contain
information about the spatial distribution of particles. Since low-frequency oscillations are
observed only in random structures, this part of the spectrum can be useful for disorder analysis.
Accumulating simulated data will allow evaluation of the particle distribution parameters from
signals. Further, it can be applied to real physical experiments.
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