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The study presents results of first-principles modeling of spin dynamics in disordered ensembles

of impurity-induced magnetic moments in a carbon spherical structure near 1% concentration of

magnetic centers. Averaged signals of Rabi oscillations and their spectra are evaluated using a

numerical algorithm based on direct calculation of quantum eigenstates. The Fourier spectrum

includes a strong peak around the Rabi frequency and an additional rise in the low-frequency

interval. Both peaks demonstrate the standard broadening proportional to the dipole interaction

energy. Low-frequency oscillations are observed only for random spin clusters, while regular

structures do not produce such dynamics. This effect results from quasi-periodic spin dynamics

caused by random distances between particles and, correspondingly, the realization of a set of

incommensurate eigenfrequencies in the spin dynamics. Thus, the low-frequency part of the

spectrum can be used to characterize spatial disorder in ensembles of spin clusters.

PACS: 67.30.hj, 67.80.Jd, 61.48.+c

Keywords: simulation of spin dynamics, Rabi oscillations, magnetization, spatial disorder.

1. Introduction

In the field of magnetic resonance, doped carbon nanostructures [1, 2] are novel and promising

material for analysis. The properties of these materials can be controlled by growing single-

domain metal cores within the shells or by depositing magnetic ions on the carbon surface [3–5].

Numerical studies based on density functional theory as well as experiments show that the

interaction between the electronic shells of dopant ions and electrons in the carbon lattice induces

strong effective magnetic moments due to local change in the π-orbitals of carbon. Their values

are close to the Bohr magneton µB [6,7]. An indirect exchange also exists in doped carbon, but

it decays rapidly due to strong screening and has negligible effect at relevant distances [8, 9].

One of the perspective examples for such studies is the composite of hollow carbon nanoshells

3–5 nm in size [10–12], doped by magnetic ions, e.g., H, N or F. Typical dopant concentration

can reach up to 1% or even more, which is much higher than in usual EPR experiments with the

concentrations 0.01–0.1% [13, 14]. This determines a characteristic distance between effective

magnetic moments induced on sphere about of 2–3 nm, and the dipole energy on the order of

10−8 eV. Therefore, modified carbon clusters can be considered as the disordered magnetic with

large density of spins. This opens the way to determine disorder parameters from resonance

data at high intensity of magnetic interaction, in contrast to the known NMR and NQR studies

of disorder in weakly-coupled rarefied systems based on chemical shifts analysis [15, 16]. A

few recent studies shows that exploration of system disorder is also effective through the Rabi

oscillations of longitudinal magnetization, because they are high-sensitive to variations of the

local magnetic fields [17,18].

Properties of similar spin structures are tough for analysis because of high density of the

magnetic moments and significant interactions. The perturbation theory [19] and method of the
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moments [20] are inapplicable here. Numerical simulation allows overcoming this difficulties.

One of the first known implementations was developed by Henner and Shaposhnikov [21, 22].

First, they evaluate the diagonalizing operator for the Hamiltonian matrix by rotation methods.

Then, transition probabilities under a continuous radio-frequency transverse field are obtained

from perturbation theory, and a histogram of resonance spectrum is built. Another known ap-

proach is based on the approximate evaluation of the time-dependent density matrix [23–25].

A highly detailed realization of this method is developed by Kuprov’s group in the SPINACH

software [26]. To avoid full matrix evaluation, the software transforms the Hamiltonian and

perturbation matrices into block-diagonal structure by excluding the less-probable transitions

between system eigenstates. Direct solution of time-dependent Schrödinger equation with non-

stationary fields is also applied for the spin decoherence analysis and Rabi problem [13]. This

is one of the most flexible methods. However, conservation of the wave-function norm as well

as operators unitarity require special numerical approaches with strict control of numerical pre-

cision increasing computational costs [27, 28]. Recently, a novel numerical method has been

implemented and validated. It builds the time-dependent wavefunction and observables from

exact stationary pure states of the spin cluster [29]. An accuracy of their evaluation is limited

by only machine precision. Although the method works only with time-independent Hamiltoni-

ans, it can be used for simulation of magnetic response under adiabatic perturbations without

additional simplifications. Moreover, it allows consideration of harmonic non-stationary field

using a rotating reference frame.

Despite the diversity of approaches, evaluation of large-scale quantum problem needs huge

operators. For N particles with spin 1/2, the dimension of spin and Hamiltonian matrices is

2N×2N . At large N , direct evaluation is impossible even with modern hardware without specific

approximations and operator truncation [26]. As an alternative, the averaging method can be

applied to systems with the random distribution of magnetic centers. It evaluates resonance

signals for a large number of independent small clusters with random spatial distribution of the

particles, and builds the mean magnetization and its spectrum. If the number of random realiza-

tion is large enough, the mean simulated signals match observables in macroscopic ensembles of

magnetic clusters [13,21,22]. The averaging method is confirmed by known experimental results

for free induction decay as well as Rabi oscillations in diluted compounds, like CaWO4:Yb
3+,

CaWO4:Er
3+ and MgO:Mn2+ [13, 30].

Previously, the stationary states approach [29] had been used for the analysis of free induc-

tion decay of transverse magnetization in ensembles of randomly distributed magnetic moments

in a cubic lattice [31]. The FID problem has also been evaluated by this method in regular

structures, e.g. linear chains, cubic, and ring clusters of spins [32–34]. In the latter cases, nu-

merical results for single clusters were successfully verified by the theory of moments. Simulated

signals of transverse magnetization are in good agreement with the empirical trial functions

given in literature [20, 35] and with the experimental data where comparison is possible. On

the other hand, averaging over an ensemble of independent clusters with different magnitude

of dipole interaction exhibit a direct transition from oscillating signal to monotonic transverse

relaxation [31]. Overall, these results confirm the developed method for spin dynamic problems.

In the current study, we present first-principles numerical simulation of Rabi oscillations in

clusters of magnetic centers randomly deposited on a diamagnetic sphere in the rotating reference

frame with concentration near 1%, using the exact evaluation of stationary eigenstates. Common

features of the mean signal and spectra of the dense random spin ensemble are established and

analyzed by averaging over a large number of independent random spatial distributions of the

2 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25305 (12 pp.)
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spins.

2. Simulation of Rabi oscillations in disordered spin clusters

Thus, we consider the spherical carbon nanocluster doped with magnetic ions, e.g. H, F or

N [10,11]. The dopants are randomly placed on the carbon surface (Figure 1). In the numerical

implementation, the azimuthal and polar angles of the dopants are set as random variables with

uniform distributions in the intervals [0, 2π] and [0, π], respectively.

Figure 1. Schematic image of magnetic dopants are randomly distributed on the spherical carbon nanos-

tructure.

We assume that all particles in the cluster have equal spins S = 1/2 and identical gyromag-

netic ratios γ. In the general case, the dimensionless Hamiltonian of the system is as follows [20]:

Ĥ

ℏω0
= −ez

N∑
j=1

Sj + pd
∑
j<k

1

r3jk

(
Sj · Sk −

3

r2jk
(Sj · rjk)(Sk · rjk)

)
, (1)

where ω0 = γH0 is the Larmor frequency in stationary magnetic field H0 = {0, 0, H0}, ℏω0 is

the Zeeman energy of particles, Sj is the spin operator of j-th particle, rjk is the radius-vector

between particles j and k, ez is the unit-vector of z-axis, and pd is the relative intensity of dipole

interaction:

pd =
Edip

EZeeman
=

ℏ2γ2

a30(ℏω0)
. (2)

Here, a0 is the characteristic distance between particles. It determines the magnitude of dipole

interaction. Therefore, we refer the geometrical size of system and coordinates of the particles to

this parameter. The vectors rjk are also scaled to a0. In addition, all energies are scaled to the

Zeeman energy, and time is measured in units of the inverse Larmor frequency, i.e. [t] = ω−1
0 .

The external magnetic field includes a constant term H0, whose direction defines z-axis, and

a transverse oscillatory part H1. Without loss of generality, the transverse field can be described

as rotating with frequency Ω:

H1 = H1 {cosΩt, sinΩt, 0} . (3)

In the reference frame rotating with frequency Ω around z-axis, the field (3) becomes constant.

Thus, we can use a stationary Hamiltonian in the effective field. There is also a well-established

transformation of the longitudinal field component [20]:

H =

(
H0 −

Ω

γ

)
ez +H1ex. (4)
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If the rotation frequency Ω exactly equals the Larmor frequency ω0, the longitudinal component

vanishes, and the eigenstates structure and their evaluation are simplified.

Additionally, the non-secular part of the dipole interaction in (1) should be omitted in the

rotating reference frame. Therefore, we use the truncated Hamiltonian:

Ĥ

ℏω0
= −h1

N∑
j=1

Sx
j + pd

∑
j<k

1− 3 cos2 θjk
r3jk

(
3Sz

jS
z
k − Sj · Sk

)
, (5)

where θjk is the polar angle between rjk and field H0, and h1 = H1/H0 is the relative strength

of the transverse field.

Full matrix of the Hamiltonian is built from the spin operators represented by tensor prod-

ucts [25]

Sj = I ⊗ I ⊗ · · · ⊗ 1

2
σ ⊗ · · · ⊗ I ⊗ I, (6)

where I is the identity matrix of 2 × 2 size and σ is the vector of Pauli matrices placed at the

j-th position in the operators product; spin is normalized to ℏ. After calculating the eigenvalues

Ej and eigenvectors |φj⟩ of the Hamiltonian, the algorithm expands the initial state |Ψ(0)⟩ over
the eigenvectors and evaluates the time-dependent wave function [29]:

|Ψ(t)⟩ =
∑
j

Cj exp(−iEjt)|φj⟩, Cj = ⟨Ψ(0)|φj⟩. (7)

In the current problem, the initial state is an adiabatically prepared inverse z-polarization of

spin cluster, M z(t = 0) = −1.

Finally, the longitudinal magnetization is evaluated using the standard relation:

M z(t) ∼ ⟨Ψ(t)|Sz|Ψ(t)⟩. (8)

The rotation frequency of transverse field is ω0, resulting the spin resonance and Rabi oscillations

of magnetization with frequency ωR = γH1. M
z(t) remains unchanged when returning into the

laboratory reference frame.

The algorithm is implemented in Python language using NumPy and LAPACK numerical

libraries [36]. It should be noted that there is a strict limitation on the spin ensemble size,

because the matrices dimension grows as 2N . Our hardware permits handling up to N = 14

particles, but most simulations were performed with N = 10 − 12 as a compromise between

system size and computation time.

3. Numerical results

Each random configuration of magnetic centres on the sphere leads to different magnetization

dynamics and spectrum structure. Since carbon samples consist of many spheres, the total

magnetization can be obtained by averaging the simulated signals [21].

Figure 2 shows the evolution of the longitudinal magnetization of spin ensembles with differ-

ent N averaged over 100 to 1000 configurations, with varying magnitude of dipole interaction.

Figure 3 displays their averaged Fourier spectra.

The total magnetization exhibits a monotonic decay which described well by an exponential

law:

M z(t) ∼ cos(ωRt) exp

(
− t

TR

)
, (9)
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Figure 2. Simulated mean Rabi signals for N = 10, 100 random configurations with varying interaction:

(a) pd = 0.01, (b) pd = 0.025, (c) pd = 0.05, also for pd = 0.05: (d) N = 8, (e) N = 10, both

include 1000 random spatial structures, and (f) N = 13, sum of 150 configurations.

where TR ∼ (ω0pd)
−1 is a characteristic damping time, close to the spin-spin relaxation time

T2. The exponential decay appears even with a small number of random realizations of cluster

structure. Adding more realization only smooths the signal. Nevertheless, variations in the local

dipole field leads to changes in the observed signal and spectrum (Fig. 3). Decay time depends

on the dipole interaction magnitude, while the Rabi frequency is determined by transverse field.

In common, this result agrees with simulations of Rabi oscillations as well as experimental

data for diluted magnetics reported in literature. For example, we consider CaWO4:Er
3+ under

a 1 mT microwave field (Rabi frequency 55.96MHz); the static longitudinal field sets the Larmor

frequency at 9.7GHz. These reference values were used by de Raedt [13]. The Er3+ ions have

a high-anisotropic gyromagnetic ratio, that is 1.25 and 8.38 in aa-plane [37]. Referring the

characteristic dipole parameter to the lattice constant a0 ≈ 0.543 nm, we get pd = ωdip/ω0 ≈
0.033. The dimensionless magnitude of the transverse field is h1 ≈ 5.77 · 10−3. Examples of

magnetization evaluated in dimensional time (Figures 4,(a), (b)) show good match with known

experimental results [13,30]. Figure 4(c) illustrates Rabi oscillations parameters in a fluorinated

carbon sphere on a dimensional time scale, for comparison. In that case, the distance between

magnetic centers is 0.2−0.3 nm (concentration is 10−2), and their magnetic moment is µB. This

yields a high pd ≈ 0.45, leading to much faster relaxation and a typical exponential decay signal.

The averaged spectrum of a diluted material contains a single resonance line at the Rabi

frequency. As expected, it is broadened proportionally to the dipole-dipole interaction parameter

pd. The height of the main peak also decreases proportionally to pd due to stronger oscillation

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25305 (12 pp.) 5
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Figure 3. Mean Fourier spectra of Rabi oscillations for N = 10, 100 random configurations with varying

interaction: (a) pd = 0.01, (b) pd = 0.025, (c) pd = 0.05, also for pd = 0.05: (d) N = 8,

(e) N = 10, both include 1000 random spatial structures, and (f) N = 13, sum of 150

configurations.

Figure 4. Simulated mean Rabi signals for N = 8, 100 random configurations, in dimensional time scale

corresponding: CaWO4:Er
3+, concentration is (a) 10−4, (b) 10−3, and (c) magnetic moments

induces by F atoms deposited at carbon sphere 5 nm in diameter, concentration is 10−2.

damping, which corresponds the signal shape. For small N , dipolar splitting of the main peak

can also be observed. However, spectra obtained of dense disordered spin clusters show a

significant contribution of low frequency oscillation. For pd = 0.05, the peak height at zero

frequency is comparable to that of the main resonance line. This arises from a superposition of

slow harmonics present in every random cluster configuration.

This effect is not observed in the spectra of regular spin clusters, particularly elements of

6 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25305 (12 pp.)
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the square lattice (Figure 5). These regular structures exhibits typical signals close to empirical

Figure 5. Example of Rabi oscillations with an empirical envelope (a) and its spectrum (b) for 9 particles

in square lattice with pd = 0.025.

approximations described in literature. For example, Abragam’s trial function [20]

M(t) ∼ exp

(
−a2t2

2

)
sin bt

bt
(10)

corresponds well with the signal of a square lattice element. The given example with pd = 0.025

has a ≈ 0.0042 and b ≈ 0.087. The empirical envelope fits the simulated magnetization up to

t ≈ 100. After this point, the signal appears a beating between two close frequencies. This is

supported by two strong peaks in signal spectrum around the Rabi frequency (see Figure 5b).

4. Analytical estimates and discussion

Before discussing possible reasons for the low-frequency rise in the spectrum, we consider the

solution for Rabi oscillations in a system of two spins. There is a significant difference between

the structures of Hamiltonian matrices for free induction decay and Rabi magnetization reversals.

For free induction decay in the laboratory reference frame, the Zeeman energy operator is

represented by the pure diagonal matrix Sz. For two spins it is as follows:

Sz =


−1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

 , |φ1⟩ =


1

0

0

0

 , |φ2⟩ =


0

1

0

0

 , |φ3⟩ =


0

0

1

0

 , |φ4⟩ =


0

0

0

1

 . (11)

It has a simple structure of eigenvectors. States φ2 and φ3 are degenerate with common energy

E2,3 = 0. Adding of the dipole interaction lifts the degeneracy, causing state mixing:

|φ̃2⟩ =
1√
2
(|φ2⟩+ |φ3⟩), |φ̃3⟩ =

1√
2
(|φ2⟩ − |φ3⟩). (12)

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25305 (12 pp.) 7
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In constast, for Rabi oscillations the Zeeman term is defined by the matrix Sx:

Sx =


0 1/2 1/2 0

1/2 0 0 1/2

1/2 0 0 1/2

0 1/2 1/2 0

 ,

|φ1⟩ =
1√
2


1

0

0

−1

 , |φ2⟩ =
1√
2


0

1

−1

0

 , |φ3⟩ =
1

2


1

1

1

1

 , |φ4⟩ =
1

2


1

−1

−1

1

 .

(13)

The off-diagonal terms of Sx produce a more complex structure of eigenstates and mix different

frequencies within the total magnetization (9).

Moreover, there is a competition with the dipole part of Hamiltonian (5), where diagonal

operator SzṠz dominates:

Ĥdip =
1

4
fpd


1 0 0 0

0 −1 −1 0

0 −1 −1 0

0 0 0 1

 , (14)

where f = 1−3 cos2 θ12. In the general case, analytical formulas for eigenvalues and eigenvectors

of the full Hamiltonian are large even for two particles. Nevertheless, it can be simplified because

of small pd:

E1 ≈ −1− fpd
8

, E2 = 0, E3 =
fpd
4

, E4 ≈ 1− fpd
8

, (15)

the energy values are expanded up to linear order in the dipole parameter. The corresponding

eigenstates are as follows:

|φ1⟩ ≈
1

1 + λ+


1

λ+

λ+

1

 , |φ2⟩ =
1√
2


0

1

−1

0

 , |φ3⟩ =
1√
2


1

0

0

1

 , |φ4⟩ ≈
1

1 + λ−


1

−λ−
−λ−
1

 ,

λ± = 1± 3fpd
8

.

(16)

The initial state of inverted M z is given by vector |Ψ(t = 0)⟩ = (0, 0, 0, 1)T , therefore the

expansion coefficients Cj (see (7)) are as follows:

C1 =
1

1 + λ+
, C2 = 0, C3 = − 1√

2
, C4 =

1

1 + λ−
. (17)

Thus, three of the eigenstates (16) contribute equally to the full wave function (7) and the

observed magnetization (8). Finally, M z(t) for N = 2 in the small pd limit becomes

M z
N=2(t) ≈ λ+ cosλ−t+ λ− cosλ+t. (18)

For example, if the spin pair is along z-axis (θ12 = 0) with pd = 0.05, the energy levels, wave

8 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25305 (12 pp.)
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function and magnetization are as follows:

E1 ≈ −0.978, E2 = 0.00, E3 = 0.05, E4 = 1.03,

|Ψ(t)⟩ ≈


0.23 exp(−iE4t)− 0.5 exp(−iE3t) + 0.27 exp(−iE1t)

−0.25 exp(−iE4t) + 0.25 exp(−iE1t)

−0.25 exp(−iE4t) + 0.25 exp(−iE1t)

0.23 exp(−iE4t) + 0.5 exp(−iE3t) + 0.27 exp(−iE1t)

 ,

M z
N=2(t) ≈ 1.08 cos(0.93t) + 0.92 cos(1.08t).

(19)

The elements of the wave function consist of a few eigenstates. For free induction decay, the

eigenstates are not mixed, and each element of |Ψ(t)⟩ includes only one exp(−iEjt).

Thereby, the leading terms of the longitudinal magnetic moment of two spins in the rotat-

ing reference frame include only two harmonics around the Rabi frequency with a dipole shift.

No low-frequency terms appear. Nevertheless, we assume that low-frequency dynamics is deter-

mined by the off-diagonal terms of Sx and Ĥdip operators in higher dimensions. Direct evaluation

of the wave function and magnetization shows that the energy spectra of random clusters include

several closely spaced levels. Transitions between these levels produce terms cos(ωRpdt) in the

magnetization signal. Since a random cluster can be considered as a set of spin pairs with vary-

ing interaction, every specific spectrum has a few peaks near zero corresponding to these pairs.

A few examples are shown in Figure 6. Averaging the signal spectrum over a large number of

Figure 6. Examples of the Fourier spectra of Rabi oscillations for pd = 0.05 and 10 particles for random

realizations; insets exhibit the magnetization evolution corresponding each spectrum.

spatial configurations smooths the spectrum and produces a visible rise near zero frequency in

the total spectrum (see Figure 3). These additional peaks occur due to strong irregularities of

the eigenfrequencies in random dense clusters, while in regular cluster all of them are localized
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near ωR. Spectral variations are well-illustrated by the “zoo” of possible signal waveforms (see

Figure 6), which have a rather different time scales. Increasing the number of realizations (see

Figure 2) enhances the smoothing of the mean signal and spectrum, making statistical analysis

of disorder possible.

In addition, when the spin cluster includes randomly spaced particles, the interaction terms

also have random magnitudes. In the general case, this produces a set of incommensurable fre-

quencies. Therefore, quasi-periodic motion arises here, in accordance with the general principles

of nonlinear systems theory [38]. The continuous Fourier spectrum of such regimes shows that

they can be considered as a form of noise. The spectrum of spin quasi-periodic motion exhibits

the same rise near zero as we observe in our simulations [39]. On the other hand, regular spin

clusters do not enter such dynamic regime, because the main eigenfrequencies in regular lattice

are rationally related. In that case, the system’s motion always remains periodic.

5. Conclusion

We performed a series of first-principles numerical simulations of spin ensembles randomly dis-

tributed on spherical nanostructures under the oscillating transverse field. In the rotating refer-

ence frame, Rabi oscillations of longitudinal magnetization are observed. Every unique random

spatial configuration of the spin cluster produces irregular signals and spectra. However, the

magnetization averaged over many configurations shows a smooth decay close to exponential,

characterized by the time TR ≈ T2.

The averaged Fourier spectrum, besides the broadened peak at the Rabi frequency, shows a

rise near zero frequencies. This effect is not observed for spin clusters with regular structures.

Excitation of low-frequency spin dynamics results from cluster disorder. Dipole interactions

between randomly deposited particles produce multiple incommensurable eigenfrequencies, so

the spin cluster enters a quasi-periodic regime with many low-frequency harmonics. Thus, the

current study has a fundamental interest in the field of chaotic dynamics of quantum spins.

Additionally, first-principal modeling provides a basis for disorder analysis in spin systems.

The shape and fine structure of the main peak and zero-frequency rise in the spectrum contain

information about the spatial distribution of particles. Since low-frequency oscillations are

observed only in random structures, this part of the spectrum can be useful for disorder analysis.

Accumulating simulated data will allow evaluation of the particle distribution parameters from

signals. Further, it can be applied to real physical experiments.

References

1. Rao C. N. R., Seshadri R., Govindaraj A., Sen R. Material Science and Engineering 15, 209

(1995)

2. Burchell T. D. Carbon Materials for Advanced Technologies, Amsterdam, Elsevier (1999)

3. An K. H., Heo J. G., Jeon K. G., Bae D. J., Jo C., Yang C. W., Park C.-Y., Lee Y. H.,

Chung Y. S. Applied Physics Letters 80, 4235 (2002)

4. Nourbakhsh A., Cantoro M., Vosch T., Pourtois G., Clemente F., van der Veen M. H.,

Hofkens J., Heyns M. M., De Gendt S., Sels B. F. Nanotechnology 21, 435203 (2010)

5. Gargiulo F., Autes G., Virk N., Barthel S., Rösner M., Toller L. R. M., Wehling T. O.,

Yazyev O. V. Physical Review Letters 113, 246601 (2014)

6. Yazyev O. V., Helm L. Physical Review B 75, 125408 (2007)

10 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25305 (12 pp.)



E.I. Kovycheva, K.B. Tsiberkin, V.K. Henner.

7. Berashevich J., Chakraborty T. Nanotechnology 21, 355201 (2010)

8. Saremi S. Physical Review B 76, 184430 (2007)

9. Rudenko A. N., Keil F. J., Katsnelson M. I., Lichtenstein A. I. Physical Review B 88,

081405(R) (2013)

10. Rudakov G. A., Sosunov A. V., Ponomarev R. S., Henner V. K., Shamim Reza Md.,

Sumanasekera G. Physics of the Solid State 60, 167 (2018)

11. Rudakov G. A., Tsiberkin K. B., Ponomarev R. S., Henner V. K., Ziolkowska D. A., Jasinski

J. B., Sumanasekera G. Journal of Magnetism and Magnetic Materials 427, 34 (2019)

12. Germov A. Yu., Prokopyev D. A., Mikhalev K. N., Goloborodskiy B. Yu., Uimin M. A.,

Yermakov A. E., Konev A. S., Minin A. S., Novikov S. T., Gaviko V. S., Murzakaev A. M.

Materials Today Communications 27, 102382 (2021)

13. de Raedt H., Barbara B., Miyashita S., Michielsen K., Bertaina S., Gambarelli S. Physical

Review B 85, 014408 (2012)

14. Baibekov E., Kurkin I., Gafurov M., Endeward B., Rakhmatullin R., Mamin G. Journal of

Magnetic Resonance 209, 61 (2011)

15. Moran R. F., Dawson D. M., Ashbrook S. E. International Review in Physical Chemistry

36, 39 (2017)

16. Chen K. International Journal of Molecular Sciences 21, 5666 (2020)

17. Khomitsky D. V., Gulyaev L. V., Sherman E. Ya. Physical Review B 85, 125312 (2012)

18. Glenn R., Baker W. J., Boehme C., Raikh M. E. Physical Review B 87, 155208 (2013)

19. Dzheparov F. S., Kaganov V. I., Khenner E. K. Journal of Experimental and Theoretical

Physics 85, 325 (1997)

20. Slichter C. P. Principles of Magnetic Resonance, Springer, Berlin (1990)

21. Henner E. K., Shaposhnikov I. G. Radiospectroscopy 10, 74 (1976) [In Russian]

22. Henner E., Shaposhnikov I., Bonis B., Sardos R. Journal of Magnetic Resonance 32, 107

(1978)

23. Bengs C., Levitt M. H. Magnetic Resonance in Chemistry 56, 374 (2018)

24. Jeschke G. Journal of Magnetic Resonance Open 14, 100094 (2023)

25. Kuprov I. Spin, Springer, Cham (2023)

26. Kuprov I. Journal of Magnetic Resonance 209, 31 (2011)

27. Gharibnejad H., Schneider B. I., Leadingham M., Schmale H. J. Computer Physics Com-

munications 252, 106808 (2020)

28. van Dijk W. Americal Journal of Physics 91, 826 (2023)

29. Henner V., Klots A., Nepomnyashchy A., Belozerova T. Applied Magnetic Resonance 52,

859 (2021)

30. Baibekov E. I., Gafurov M. R., Zverev D. G., Kurkin I. N., Rodionov A. A., Malkin B. Z.,

Barbara B. Physical Review B 95, 064427 (2017)

31. Tsiberkin K. B. The European Physical Journal B 96, 70 (2023)

32. Kovycheva E. I., Tsiberkin K. B. Bulletin of Perm University. Physics 2, 26 (2022) [In

Russian]

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25305 (12 pp.) 11



Simulation of Rabi oscillations in random clusters ...

33. Tsiberkin K. B., Kovycheva E. I. Applied Magnetic Resonance 55, 565 (2024)

34. Tsiberkin K. B., Kovycheva E. I., Henner V. K. Bulletin of the Russian Academy of Sciences:

Physics 89, 1707 (2025)

35. Jensen S. J. K., Platz O. Physical Review B 77, 31 (1973)

36. Millman K. J., Aivazis M. Computing in Science and Engineering 13, 9 (2011)

37. Ourari S., Dusanowski L., Horvath S. P., Uysal M. T., Phenicie C. M., Stevenson P., Raha

M., Chen S., Cava R. J., de Leon N. P., Thompson J. D. Nature 620, 977 (2023)

38. Kuznetsov A. P., Migunova N. A., Sataev I. R., Sedova Y. V., Turukina L. V. Regular and

Chaotic Dynamics 20, 189 (2015)

39. Velez J. A., Perez L. M., Pizarro A. E., Pedraja-Rejas L., Suarez O. J., Hernandez-Garcia

R., Barrientos R. J., Bragard J., Laroze D., Otxoa R. M. Communications in Nonlinear

Science and Numerical Simulation 149, 108942 (2025)

12 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25305 (12 pp.)


