

Volume 27

Issue 3

Article No 25310

1-13 pages

2025
doi: 10.26907/mrsej-25310

 http://mrsej.kpfu.ru

 http://mrsej.elpub.ru

ISSN 2072-5981 ISSN 2072-5981
doi: 10.26907/mrsej

https://doi.org/10.26907/mrsej-25310
https://doi.org/10.26907/mrsej-25310
http://mrsej.kpfu.ru/
http://mrsej.elpub.ru/
https://doi.org/10.26907/mrsej

Established and published by Kazan University*

Endorsed by International Society of Magnetic Resonance (ISMAR)

Registered by Russian Federation Committee on Press (#015140),

August 2, 1996

First Issue appeared on July 25, 1997

© Kazan Federal University (KFU)†

"Magnetic Resonance in Solids. Electronic Journal" (MRSej) is a

peer-reviewed, all electronic journal, publishing articles which meet the

highest standards of scientific quality in the field of basic research of a

magnetic resonance in solids and related phenomena.

Indexed and abstracted by

Web of Science (ESCI, Clarivate Analytics, from 2015),White List (from 2023)

Scopus (Elsevier, from 2012), RusIndexSC (eLibrary, from 2006), Google Scholar,

DOAJ, ROAD, CyberLeninka (from 2006), SCImago Journal & Country Rank, etc.

Editor-in-Chief

Boris Kochelaev (KFU, Kazan)

Executive Editor

Yurii Proshin (KFU, Kazan)

mrsej@kpfu.ru

Honorary Editors

Jean Jeener (Universite Libre de

Bruxelles, Brussels)

Raymond Orbach (University of

California, Riverside)

This work is licensed under a Creative

Commons Attribution-ShareAlike

4.0 International License.

This is an open access journal which means that

all content is freely available without charge to

the user or his/her institution. This is in accordance

with the BOAI definition of open access.

Technical Editor

Maxim Avdeev (KFU, Kazan)

mrsej@kpfu.ru

Editors

Vadim Atsarkin (Institute of Radio

Engineering and Electronics, Moscow)

Yurij Bunkov (CNRS, Grenoble)

Mikhail Eremin (KFU, Kazan)

David Fushman (University of

Maryland, College Park)

Hugo Keller (University of Zürich,

Zürich)

Yoshio Kitaoka (Osaka University,

Osaka)

Boris Malkin (KFU, Kazan)

Alexander Shengelaya (Tbilisi State

University, Tbilisi)

Jörg Sichelschmidt (Max Planck

Institute for Chemical Physics of

Solids, Dresden)

Haruhiko Suzuki (Kanazawa

University, Kanazava)

Murat Tagirov (KFU, Kazan)

Dmitrii Tayurskii (KFU, Kazan)

Valentine Zhikharev (KNRTU,

Kazan)

* Address: "Magnetic Resonance in Solids. Electronic Journal", Kazan Federal University; Kremlevskaya str., 18;

Kazan 420008, Russia

† In Kazan University the Electron Paramagnetic Resonance (EPR) was discovered by Zavoisky E.K. in 1944.

http://mrsej.kpfu.ru/
http://mjl.clarivate.com/cgi-bin/jrnlst/jlresults.cgi?PC=MASTER&Full=Magnetic%20resonance%20in%20solids
http://www.scopus.com/source/sourceInfo.url?sourceId=21100223804&origin=resultslist
https://elibrary.ru/title_about.asp?id=7642
http://scholar.google.com/
https://doaj.org/toc/2072-5981
http://road.issn.org/issn/2072-5981-magnetic-resonance-in-solids#.V1qoF1WLTX4
http://cyberleninka.ru/journal/n/magnetic-resonance-in-solids-electronic-journal
http://www.scimagojr.com/journalsearch.php?q=21100223804&tip=sid&clean=0
mailto:mrsej@kpfu.ru
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
http://www.budapestopenaccessinitiative.org/
mailto:mrsej@kpfu.ru

Short cite this: Magn. Reson. Solids 27, 25310 (2025) doi: 10.26907/mrsej-25310

NMR experiment control system with an interval
programmable generator

A.S. Alexandrov∗, D.L. Melnikova, D.S. Ivanov, V.D. Skirda

Kazan Federal University, Kazan 420008, Russia

*aaleksan@kpfu.ru

(received November 29, 2025; revised December 23, 2025; accepted December 26, 2025;

published December 30, 2025)

Exceptionally high demands on the time control accuracy and the experiment flexibility are

imposed by modern nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance

imaging (MRI). A critical component of NMR equipment is a specialized device responsible

for synchronizing and controlling all nodes and devices during the experiment. In this paper,

a device control system with interval programmable generator (programmator) of arbitrary

pulse sequences implemented on programmable logic integrated circuits (FPGAs) is proposed.

The designed system architecture provides simultaneous control of up to 245 external devices

in mode both asynchronous and synchronous with the pulse sequence via special instruction

words. A universal instruction format used for both internal and external devices provides a

simple way to connect any new external device to the control system. The internal instructions

set, which includes intervals, nested loops and macros allow to develop and implement the

highest complexity pulse sequences in NMR experiments. The duration of the interval set by a

single instruction can take values from 20 ns to 0.334 seconds. For any fragments of the pulse

sequence, it is possible to form cycles with up to 216 repetitions, including nested (cycle within

cycle) cycles with a nest depth of 16. Thus, usage a memory for only 2048 instruction words

allows to reach the total duration of the generated sequence 1080 s (with a 20 ns resolution).

PACS: 71.70.Ch, 75.10.Dg, 76.30.Kg, 71.70.Ej.

Keywords: nuclear magnetic resonance, pulse sequences, programmator, synchronization, programmable
logic integrated circuits.

1. Introduction

Modern nuclear magnetic resonance (NMR) equipment is highly complex and include a set

of different devices: high-frequency (HF) generators, power amplifiers, heterodyne and super-

heterodyne receiving amplifiers, HF switches, gradient pulse amplifiers, shimming coil current

sources, and various controllers (sample temperature, sample rotation speed, reflected power of

the power amplifier, gradient pulse current, and so on). Earlier, among the devices one could

distinguish a pulse sequence generator. However, today it is insufficient to generate only video

pulses that determine the radio frequency (RF) pulse sequence. To conduct a modern NMR

experiment one requires synchronicity between all devices involved in generating and recieving

the NMR signal. In other words, it is necessary to ensure stable time intervals not only between

RF pulses, but also to ensure synchronous, and in some cases, coherent relations between many

other actions: magnetic field gradient pulse generators, changes in their amplitudes and signs,

setup of the RF and ADC phases, etc. At the same time, fulfillment of the coherence condition,

a synchronicity of all specified actions with the resonance frequency, will provide the ability

to generate RF pulses modulated in amplitude, frequency, and phase, to use arbitrary phase

sequences and phase cycles in the experiment, to ensure synchronous registration and digital

quadrature detection of the signal, and to apply digital signal processing methods. Devices

requiring indicated synchronicity will henceforth be called synchronous devices and a special

device that provided this synchronicity, a programmable generator or simple, a programmator.

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.) 1

http://doi.org/10.26907/mrsej-25310

NMR experiment control system with an interval programmable generator

It is necessary to note that for each manufacturer of NMR equipment, the programmator is

unique and deeply integrated system. It has own hardware and software interface, and cannot

be purchased separately and used to develop new devices, since this will require using the entire

system including software. The only commercially available exception here is “PulseBlaster”

pulse generator by SpinCore Technologies [1]. It has excellent time and frequency characteristics,

but has a limited model series and, most importantly, has a closed specification. This brings

some limits when use “PulseBlaster” for designing a new NMR equipment especially mobile or

bench-top ones. Another one promising system is “OPENCORE NMR”, a scientific and open-

source project by Takeda [2, 3]. The OPENCORE NMR system has an open specification and

based on the following ideology: all functions of NMR devices that can be implemented digitally

are implemented on programmable logic integrated circuits (FPGAs).

A significant disadvantage of both systems is that they have no simple way to add a new

type of synchronous device. This ability is an important feature in terms of developing new

equipment or implementing new NMR techniques. If a developer or a researcher requires a new

receiver or transmitter or gradient channel, he must just plug-in a new device without the need

to rebuild the entire system from scratch. The progress in MRI is driven by an increase in the

number of transmitting-receiving and gradient channels. For example, tens new devices had to

be connected to implement PatLock [4]. Hennig and Schultz themselves write that the system is

rebuilt each time, and it’s a significant achievement when, in addition to three linear gradients,

several nonlinear ones with a corresponding array of receiving coils are added.

The purpose of this paper is to present a development designed to significantly simplify all

procedures for expanding the functionality of NMR equipment. This applies not only to the

manufacturing of new setups, but also to the research phase, when new ideas arise about the

need to conduct a particular experiment, with new control elements or effects on the object

being studied.

In the following sections, we will outline the main concepts of the proposed control system.

Section 2 describes the structure (the architecture) of the device control system, the key com-

ponent of which is a device control unit. Section 3 further explores the design and features of

the device control unit. Sections 4 are devoted to the main component of the device control

unit – the interval programmer. Section 5 presents the features and specifications of the sec-

ond key component of the device management system – the physical interface for connecting

and synchronizing devices. In the last section 6 consideration about FPGA model selection for

implementing the control system is given.

2. Devices control system

Let us consider the general control scheme of the NMR equipment (Figure 1). The device control

unit (DCU) performs a number of functions. It contains the programmator itself, a computer

communication interface, and several devices essential for the NMR equipment, such as an RF

pulse generator and a digital detector.

Obviously, the pulse sequence designing, measurement data storage, processing, logging, and

visualization are performed on the computer. The computer communication interface ensures

fault-free data transmission and reception with high throughput. This is important due to the

large volumes of measured data and can optimize the control unit’s intermediate buffer memory

for temporary storage of measured data.

According to the block diagram shown in Figure 1, devices are controlled by device control

2 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.)

A.S. Alexandrov, D.L. Melnikova, D.S. Ivanov, V.D. Skirda

Figure 1. Block diagram of device control system.

unit (DCU) via two parallel buses: the synchronous device bus (SDB) and the asynchronous

device bus (ADB). Synchronous (SDevi) and asynchronous (ADevi) devices are connected to the

buses and have a “response” interface IF. The interface node IF is also an inherent part of the

control system. It has a unique address, allows any device to receive instructions via these buses

(either ADB or SDB or both), and generates control signals for the device’s analog circuitry

according to the argument of the instruction. For this purpose, IF may has a DAC and/or ADC

onboard depending on the requirements of a specific device. These instructions generated by

DCU contain the address (“to”) and execution information (“how”) in their argument. A timed

sequence of instructions sent over control buses carry out the synchronization of all devices.

It is worth noting that to generate arbitrary pulse sequences in real time, instructions to

read information from devices over the SDB bus must be disabled. Nevertheless, the devices,

both synchronous and asynchronous, require feedback (information reading), such as measuring

the output stage temperature, reflected power level, sample temperature, etc. This task is

accomplished using an asynchronous device bus (ADB), which is controlled by the DCU and

enables the writing and reading of instructions to devices independently of the pulse sequence

execution. The implementation of identically structured SDB and ADB interfaces allows any

device to be connected to either of the two buses, or both at once.

3. Device control unit

Detailed implementation of the NMR device control unit is shown in Figure 2. The main modules

of the control unit are: an interval programmator, a digital synchronous detector (DSD), a digital

low-pass filter (LPF), and a radio-frequency pulse generator (RFG). These modules are designed

as asynchronous devices, i.e., they are connected to ADB, have their own unique address, and

receive asynchronous instructions via ADB.

The programmator is a relatively simple digital device. It includes a random-access memory

for storing instruction words, an address counter for pointing current instruction, and an internal

instruction decoder. Its main task is to set the instructions to the output synchronous bus

at exact time without any delays. At the current level of technology, the optimal solution

for implementing a programmator is a programmable logic integrated circuit (FPGA). The

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.) 3

NMR experiment control system with an interval programmable generator

Figure 2. Block diagram of device control unit (DCU).

operating logic of the FPGA is specified by setting (programming) a specific configuration of

connections of logical elements and modules inside the FPGA into a given electrical circuit.

It is important that such an implementation of a complex electrical circuit inside the FPGA

can be, if necessary, reprogrammed, either partially or completely [5,6]. Application of modern

FPGAs in NMR equipment allows one to solve many important problems, including not only

the formation of pulse sequences, but also the formation of the RF pulses themselves with

the specification of their frequency, phase and amplitude with an accuracy of up to ns and low

jitter [7]. The architecture of modern FPGAs also allows one to realize algorithms of digital signal

filtering in real time, and perform frequency synthesis and multiplication functions [7–9]. All

mentioned features make FPGAs very promising for use in complex NMR equipment, including

MRI [10–12].

The asynchronous RF pulse generator (RFG) with address 0xDE, shown in the block diagram

of Figure 2, generates excitation RF pulses. To generate RF pulses of required frequency and

phase, the RPG structure includes direct digital synthesis (DDS) oscillator. Two multipliers

connected consequently to DDS digital output used to set required amplitude and shape of the

RF pulse. The RFG device is interfaced with the analog circuitry of the NMR transmitter path

via a DAC. This DAC could, in principle, be a part of the transmitter. The digital synchronous

detector (DSD) with address 0xAD performs synchronous detection and pre-filtering of the

digitized NMR signal. The DSD device is interfaced with the NMR receiver path via an ADC to

digitize the NMR signal at pre-selected intermediate frequency. The resonance frequency needs

to be converted to the intermediate frequency by the mixer circuitry in the receiver path.

The 1000BASE-T Ethernet standard was chosen as the computer communication interface

(CI on Figure 2), with a maximum speed of up to 1 Gbps when connected via Category 5e

twisted-pair cable. This interface was originally designed (see, for example, [13]) for stable data

transmission over long distances in conditions of various external interference. Consequently, it

is virtually free of the drawbacks inherent in other interfaces (PCI, USB), such as the inability to

automatically restore the connection when exposed to strong interference. Hardware solutions

4 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.)

A.S. Alexandrov, D.L. Melnikova, D.S. Ivanov, V.D. Skirda

for implementing Ethernet are currently very widely used and represent well-established and

inexpensive single chip network controllers with a standardized GMII/MII format output.

The physical layer (PHY) of the Ethernet interface is implemented using a physical layer

controller supporting the GMII protocol (e.g., RLT8211). The Ethernet data link, network,

and transport (UPD – User Datagram Protocol) layers are implemented on the FPGA. After

sequentially decoding messages from Ethernet layers are transited directly to the asynchronous

device bus (ADB) via asynchronous FIFO queues. UDP transport layer is chosen for the follow-

ing reasons: firstly, the programmator is not intended to operate in highly branched networks,

and secondly, implementing UDP on the FPGA requires significantly fewer FPGA resources.

4. Programmator

4.1. Base principals

The two main functions of programmator are follows: a) receiving/writing the entire specified

sequence of executed actions from the control computer as a single package of instruction words

into its random-access memory (RAM); b) in automatic mode or upon an external command such

as “start”, sequentially selecting instructions from the memory stack at a high clock frequency

and distributing them among all devices of the NMR equipment. Each instruction word contains

an address byte and a set of bytes (at least three) containing information on the value and

sign of the specified amplitude, phase, frequency, time interval, number of repetitions, etc. In

other words, each instruction word contains information on “who should execute and how to

execute”. Moreover, all instruction words intended for setting time intervals have their own

specific address (“interval” instruction), at which a delay timer is automatically started to form

the corresponding time interval in the programmed sequence of actions. Immediately after the

timer is started, all other instructions scheduled for execution in the current time interval are

sequentially selected from memory and sent to the appropriate devices. Upon selecting the next

“interval” instruction indicating next time interval the programmator switches to a wait mode.

A new value will be written to the timer only after executing previous “interval” instruction.

Thus, in each time interval, only those instructions stored in the memory stack immediately

after the current “interval” instruction, but before the next one, are executed.

Execution of instructions for generating cycles or macros is organized in a similar manner.

The “cycle” instruction contains a cycle start pointer (an address in the programmator’s RAM)

and the number of repetitions in the cycle. The “macro” instruction specifies the start address

of the pulse sequence fragment designated as a macro. Each “cycle” and “macro” instruction

can be assigned its own index (name). This allows for generating multiple macros and cy-

cles, including nested ones, in a single sequence. Thus, the programmator essentially acts as

a device manager, generating instructions such as “who, when, and how” to execute the pro-

grammed action. Instruction such as “interval”, “cycle”, and “macro” are internal instructions

of the programmator itself. These internal instructions executed sequentially create a time scale

(schedule) for other instructions. This not only optimizes the resources of the programmator

as an electronic device, but most importantly, correlates with the general principles of NMR

signal generation. According to which [14, 15] the response of a spin system to various pulsed

exposures (RF, magnetic fields, etc.) is resulted in the generation of signals whose occurrence

and duration are, in one or another way, related to the duration and timing of all previous

interactions. The use of an interevent interval counter, rather than an absolute time counter, is

one of the features of the designed programmator.

Beyond the devices such as a transmitter, receiver, ADC, magnetic field gradient generators,

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.) 5

NMR experiment control system with an interval programmable generator

etc., NMR equipment may include devices that are not directly involved in the generating and

receiving of the NMR signal. Those devices can logically be called asynchronous. These can

include various kinds of controllers of the external magnetic field, experimental conditions (tem-

perature, pressure, etc.), changing the sample or its position, etc. Clearly, the coordination of

asynchronous devices does not require such serious time constraints and may well allow delays

in control instructions supported by modern computers (∼10 ms). As a result, in most cases

such devices are controlled directly from a computer via any available interface. However, as the

number of such auxiliary devices increases, the number of different connections and interfaces

also increases. That is greatly complicates the configuration of a new NMR equipment. An

effective solution in this case would be to connect all asynchronous devices to the computer via

a separate bidirectional interface. That would support a sufficient number of parallel connec-

tions, and would be controlled, if necessary, not only directly by the computer, but also by the

programmator.

If a uniform instruction word format is chosen for synchronous and asynchronous devices,

it would be logical to implement such an interface node directly in the programmator. Thus,

control of any device initially operating as an asynchronous device can be transferred to control

by instructions generated synchronously with the execution of the pulse sequence, and vice versa.

4.2. Design

Figure 3 shows the block diagram of the interval programmator. Whole programmator circuitry

is clocked by a single direct (CLK) and inverse (CLK) clock signal generated by the FPGA

internal PLL (phase-locked loop) generator. As it was told previously programmator has two

ADB interfaces IF1 and IF2. IF2 interface is used to receive state change instruction from ADB

or return the programmer current state. The programmator has three main states: “start”,

“stop”, and “load”. State is changed when an instruction with a specific argument is received

by IF2. The argument is decoded, and the state decoder generates control signals (LOAD,

START) for changes in the programmator state. In the “stop” state, the address counter is

cleared and blocked (by CE = 0), the synchronous output bus is inactive. In the “load” state

the programmator is prepared to receive an instruction sequence. The sequence is received from

ADB by IF1 and then written to instruction memory RAM via SEQ[11:0] bus.

In the “start” state, the address counter increments its value (ADB[11:0]) each clock cycle,

and the instructions from the RAM are selected and set on the memory output bus CMD[31:0]

one by one each cycle. The most significant byte (address/instruction code) of the output

memory bus is decoded by instruction decoder. This determines whether the code corresponds

to the internal instruction set of the programmator. If so, a corresponding strobe is generated:

TI – for execution TIME instruction; CY/EL – for execution CYCLE/ELCYC instructions;

MA/OR – for execution MACRO/ORCAM instructions. If not, the instruction is considered as

external, the EX strobe generated and goes to the output buffer of the SDB (EXT) and then

to the output of the SDB within four cycles. The address counter is blocked for the duration of

these four cycles, i.e., the programmator does not proceed to execute the next instruction word.

The basis for generating an arbitrary pulse sequence is the internal interval instruction TIME

(here and below, only instruction mnemonics are given, not their binary representations, which,

in principle, can be chosen arbitrarily). When this instruction is executed, its argument is loaded

into the decrementing counter (located in the TIME block) and the counter is activated. The

address counter is not blocked, and the programmator proceeds to the next instruction, and so

6 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.)

A.S. Alexandrov, D.L. Melnikova, D.S. Ivanov, V.D. Skirda

Figure 3. Block diagram of interval programmator.

on until the next TIME instruction appears at CMD[31:0]. If the interval counter is still active,

the address counter and RAM output will be blocked (by CEO1, CEO2 = 0) until the counter

finished. Thus, execution of the next TIME instruction will begin after a time interval equal

to the period of the main clock frequency Tclk multiplied by the argument of the current TIME

instruction. TIME instructions sequentially located in memory (RAM) form time intervals. At

the beginning of their execution, all instructions immediately following the TIME instruction

will be sent to the corresponding addresses (devices), in the sequence in which they will be

selected from RAM as a result of incrementing of the address counter output. The minimum

duration of the time interval is equal to the period of the main clock frequency Tmin = Tclk, and

the maximum duration will be determined by the counter bit depth n: Tmax = (2n − 1)Tclk.

Summary data on the implemented internal instructions are given in the table 1.

Table 1. Internal programmator instructions.

Instruction Code Argument Description

IDLE 0x00 − no action

TIME 0xF1 time[23 : 0] execute a time interval of duration time

MACRO 0xF6 addr[11 : 0] go to an instruction located in RAM at the addr

ORCAM 0xF7 − return from executing last macros

CYCLE 0xF3 n[15 : 0] begin a cycle of n+ 1 repetitions

ELCYC 0xF4 − return to the beginning of cycle or end cycle

The next required internal instructions are the CYCLE (cycle start) instruction and ELCYC

(cycle end) instruction. The CYCLE instruction argument is the number of cycle repetitions. For

the ELCYC instruction, the argument is irrelevant. When the CYCLE instruction is executed,

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.) 7

NMR experiment control system with an interval programmable generator

its argument is placed in the decrementing cycle counter (located in the CYC/MAC block),

and the counter is activated. The address following immediately after the current address of

CYCLE instruction is also pushed onto LIFO-1 stack (located in the CYC/MAC block). The

cycle counter value is decremented during the ELCYC instruction execution, and the previously

stored value of the cycle start address from the LIFO-1 stack (NAS[11:0]) is loaded (LD = 1)

into the instruction address counter. As a result, the pulse sequence execution returns to the

cycle start. The cycle exit occurs when the cycle counter reaches the “0” state, this state blocks

overwriting address counter during ELCYC instruction execution. Thus, the number of cycle

repetitions will be equal to N + 1, where N is the CYCLE instruction argument. The cycle

counter is selected as 16-bit and, accordingly, the maximum repetitions are 216.

An important feature is the ability to form nested loops, with a nesting depth equal to the

LIFO-1 stack length (in our case, 16). When the CYCLE instruction (CYCLE-2) is encountered

again within a loop, its argument (N2) is loaded into the cycle counter, and the current value

of the cycle counter of the previously executed CYCLE instruction (CYCLE-1) is placed on the

LIFO-2 stack (memory of the number of remaining repetitions). The values in the LIFO-1 stack

are also shifted forward by one position, and a new loop start address is written. The pulse

sequence then proceeds to the repeated execution of the fragment determined by the boundaries

of the nested loop (CYCLE-2). Upon completion of the nested loop (execution of the specified

number of repetitions N2 + 1), the address values of the mentioned memory stacks are shifted

back by one position, and execution of the outer loop continues. Thus, the fragment of the

sequence designated by the boundaries of the nested loop will be repeated (N2 + 1)(N1 + 1)

times, where N1 is the specified number of cycles in the CYCLE-1 instruction.

At first glance, it might seem that the three instructions described (TIME, CYCLE and EL-

CYC) are, in principle, more than sufficient for generating sequences of virtually any complexity

and duration. This is especially true given the ability to create nested loops (nesting depth 16)

and define independent cycles for individual fragments of a pulse sequence. However, often may

arise situations where a complex fragment of a pulse sequence must be repeated once at any des-

ignated time point(s) in the current sequence of actions. In this case, it makes sense to store this

fragment in the programmator RAM once. Then, during execution, at the required time point,

use the corresponding pointer to rewrite the address counter to the beginning of this section

for execution within the given time interval and subsequent continuation of the programmed

sequence. This not only optimizes the memory requirements for the programmator, but also

ensures the convenience of generating such sequences, both at the level of the pulse sequence

developer and at the level of the operator (user). To implement this function, two more internal

instructions are provided: the MACRO instruction – an unconditional jump to any specified

address of RAM, and the ORCAM instruction, which indicates the end of the selected fragment

of the sequence.

When executing the MACRO instruction, the address counter is loaded (LD = 1) with the

value (NAS[11:0]) specified in the MACRO instruction argument, causing the programmator to

begin execute the instructions stored in memory at the specified address. The address imme-

diately following the MACRO instruction for returning from the macro is stored in a separate

register during execution the MACRO instruction. Return to this stored address occurs when

the ORCAM instruction appears at the RAM output. Described circuitry is located in the

CYC/MAC block and share several elements with CYCLE circuitry.

Thus, the proposed programmator structure allows any fragment of a pulse sequence to be

repeated multiple times by adding two instructions at the beginning and end of the selected

8 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.)

A.S. Alexandrov, D.L. Melnikova, D.S. Ivanov, V.D. Skirda

fragment: CYCLE and ELCYC, respectively. Moreover, since they are executed independently,

there can be multiple such fragments in the overall sequence. The only limitation is the capacity

of RAM memory, or more precisely, the number of addresses in it. Also, by designating the

boundaries of any fragment of the pulse sequence first with the MACRO instruction and then

with the ORCAM instruction, this selected fragment can be repeated in any other time interval

of the pulse sequence. It is necessary simply to insert a MACRO instruction with corresponding

argument in the desired time interval to create such a fragment. It is permissible to designate

several fragments at once with macros.

5. Instruction words and control bus structure

Each instruction word in the programmator memory consists of two fields: 1) a unique instruc-

tion/device address code; 2) an instruction argument field. As already noted, the number of

devices in modern NMR systems is relatively large; however, in practice, this value never exceeds

several dozen. Therefore, a one byte is sufficient for the instruction code field. When selecting

the argument field width, it is important to follow the principle that, to ensure high perfor-

mance, the whole value range of internal instructions arguments should fit within the length of

one instruction word. Based on these considerations, a 24-bit data word appears optimal. For

example, for the TIME instruction, this allows to set argument values from 0 to 224 − 1. So,

using a 24-bit interval counter at a clock frequency of 50 MHz, this will ensure the generation

of time intervals up to 0.334 sec with a resolution of 20 ns. At a clock frequency of 10 MHz,

quite acceptable for NMR time resolution of 100 ns is provided. Maximum value of a single time

interval in this case is 1.677 seconds. Programming even longer time intervals is easily achieved

by composing them from several consecutive TIME instructions. For the CYCLE instruction

argument only the 16 least significant bits of the three bytes of the argument field was used.

This corresponds to a maximum of 65536 repetitions of a single cycle, and 2256 repetitions for

16 nested cycles.

When discussing information transfer between various devices and components of the NMR

instrument, it is important to ensure that the instruction word is written to the device via the

ADB or SDB in a relatively small number of clock cycles, and that the physical buses do not

have too many conductive wires. Based on these considerations, the optimal transmission is

one byte of the instruction word per clock cycle. In this case, the bus should contain eight

independent data lines DT [7:0] and three service lines for signal management: DE – the “data

enabled” signal; RE – the “read enabled” signal; CLK – the bus clock signal. Therefore, the

required bit depth is 12, and the time required to transfer one instruction word in four clock

cycles is 80 ns at a clock frequency of 50 MHz. Figure 4 shows the timing diagram for writing an

instruction word to a device via ADB/SDB interface. The start of writing an instruction word

to the device is initiated on the negative edge of the clock signal when DE = 0 and RE = 0. At

this point, the most significant byte of the instruction word - the instruction code - is written

(designated as CMD1 and CMD2 in Figure 4). In the following three clock cycles, DE = 1, and

3 bytes of the instruction word argument field (designated B2-B0 in Figure 4) are sequentially

written to the device.

Reading a device occurs when RE = 1, which is only available for ADB. The data read

diagram will look similar to the write diagram shown, differing only in that the instruction code

byte on the bus (i.e., the read request) is generated by the device control unit (Figure 2), and

the three data bytes (the response) are generated by the device whose unique code matches the

code written in the address byte.

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.) 9

NMR experiment control system with an interval programmable generator

Figure 4. Instruction word write time diagram

At this point it is worth to pay attention to another one feature of designed system. Time to

rewrite entire instruction RAM would be equal to length of the RAM multiplied by time need

to write one word. Thus, to renew the operating pulse sequence one need 2048 ∗ 80 ns = 163µs

at a clock frequency of 50 MHz, i.e., almost instantly in terms of typical for NMR waiting times.

6. Device control unit verification

The described control system can, in principle, be implemented on various modern FPGAs. We

will outline a number of critical FPGA characteristics required for implementing the developed

control system. For the programmator implementation, the most critical FPGA component is

the instructions memory. The FPGA model must contain integrated block RAM. The minimum

required capacity can be estimated at approximately 4 KB, which would be sufficient for, for

example, 1000 4-byte instruction words. Another critical element of the programmer is the

interval counter for the TIME instruction, since its bit width, along with the clock frequency,

determines the resolution of the time interval and the maximum interval value specified by a

single instruction.

The RF pulse generator module requires the ability to operate at a high frequency of over

250 MHz for DDS, which in turn requires a PLL generator integrated into the FPGA to generate

such a high clock frequency. In addition, the RFG contains multipliers, a set of multi-bit registers

(about 24) and ROM tables (for storing the shapes of generated oscillations and the shapes of

RF pulse envelopes), which in turn consumes a significant number of FPGA cells.

Finally, implementing a computer communication system requires a large register set (approx-

imately 256 for decoding network protocol messages) and the ability to operate at frequencies

of approximately 125 MHz. A FPGA that meets these minimum requirements can be used to

implement the control system. In our case, we selected the Xilinx XC6SLX9, the entry-level

device in the SPARTAN 6 series. It contains 4800 flip-flops, 18 kB of block RAM, two PLL

generators, eight integrated 18-bit multipliers, and can operate at frequencies up to 1080 MHz.

The FPGA configuration was designed using Xilinx’s ISE Design Suite development system.

The configuration was verified through various tests in a logic simulator. A printed circuit

board was designed and assembled for this configuration (Figure 5). Then the performance of

the control system was verified.

Let us give several examples of the designed control system capabilities. Figure 6 shows RFG

output signal while generating three RF pulses different shapes: rectangular, Gaussian, and

SINC. The pulse duration was 64µs, with an interval between pulses was 400µs. Such values

are large for relaxation measurements, but are typical for imaging.

Figure 7 shows a receiver output signal during the action of generated Carr-Purcell-Meiboom-

10 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.)

A.S. Alexandrov, D.L. Melnikova, D.S. Ivanov, V.D. Skirda

Gill (CPMG) pulse sequence; the π/2 pulse duration was 16µs, with an interval between pulse

was 2 ms. At the figure one can clearly observe the echo signals from Midel-7131 oil sample.

These examples demonstrate the correspondence between the specified and observed parame-

ters of the generated sequence and, therefore, demonstrate the operability of the control system.

Figure 5. Assembled printed circuit board of the control system

Figure 6. RFG output signal during generating sequence of various shape RF pulses

Figure 7. Receiver output signal during the action of generated Carr-Purcell-Meiboom-Gill (CPMG)

pulse sequence

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.) 11

NMR experiment control system with an interval programmable generator

7. Conclusion

The NMR device control system was designed. The interval programmator, RF pulse gener-

ator and digital detector are implemented on a Xilinx XC6SLX9 FPGA. Taking into account

some of the resources allocated for encoding internal instructions, the control system enables

synchronization of up to 245 external devices, including those configured on the same FPGA.

These include, in particular, an RF pulse generator (with specified duration, amplitude, and

phase) and a digital synchronous detector. The duration of one interval in the pulse train can

take value up to 0.334 seconds in 20 ns increments at a clock frequency of 50 MHz. The clock

frequency can be changed if necessary. The programmator can generate nested cyclic sequences

with up to 216 repetitions and up to 16 nested loops. The instruction structure, including nested

loops and macros, enables the development of pulse sequences of the highest complexity. The

programmator interface architecture with external devices allows for easy connection to exter-

nal devices, regardless of whether they are synchronous or asynchronous with respect to the

programmed pulse sequence.

The interface nodes, which allow to connect existing or newly developed devices to the con-

trol system are implemented on a Xilinx XC95144 CPLDs. The response interface utilizes

approximately 30% of the CPLD resources. The remaining resources can be used to gener-

ate device-specific digital control circuits, including simple on/off circuits, trigger circuits, or

simple digital processing circuits (addition, subtraction, and accumulation). Depending on the

requirements of a specific device interface node may has a DAC and/or ADC onboard.

It is worth noting that reliable communication with devices via synchronous and asynchronous

buses is ensured at frequencies up to 50 MHz. However, the programmator and devices imple-

mented on the FPGA can operate at higher frequencies. The designed system architecture

allows the optimization (reducing) of the clock frequency for both control buses for just external

devices.

Acknowledgments

This work was funded by the subsidy allocated to Kazan Federal University for the state assign-

ment in the sphere of scientific activities number FZSM-2023-0016.

References

1. PulseBlaster - Programmable Pulse and Delay Generator PCIe Board SP46, Owner’s Man-

ual, SpinCore Technologies Inc., Gainesville, FL 32653, USA (2025).

2. Takeda K., Rev. of Sci. Instr. 78, 033103 (2007).

3. Takeda K., J. of Magn. Reson. 192, 218 (2008).

4. Hennig J., Welz A. M., Schultz G., Korvink J., Liu Z., Speck O., Zaitsev M., Magnetic

Resonance Materials in Physics, Biology and Medicine 21, 5 (2008).

5. Monmasson E., Cirstea M. N., IEEE Trans. on Indust. Electr. 54, 1824 (2007).

6. Kuon I., Tessier R., Rose J., Foundations and Trends in Electr. Des. Autom. 2, 135 (2008).

7. Tayler M. C., Bodenstedt S., J. of Magn. Reson. 362, 107665 (2024).

8. Harris M., Harris L., Digital Design and Computer Architecture (Elsevier, 2007).

9. Sun L., Savory J. J., Warncke K., Concepts in Magn. Reson. Part B 43, 100 (2013).

12 Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.)

A.S. Alexandrov, D.L. Melnikova, D.S. Ivanov, V.D. Skirda

10. Othman M., Abdullah N., Rusli N., in 2010 IEEE Symp. on Indust. Electr. and Appl.

(ISIEA) (2010) pp. 623–628.

11. Li L., Wyrwicz A. M., J. of Magn. Reson. 255, 51 (2015).

12. Gebhardt P., Wehner J., Weissler B., Botnar R., Marsden P., Schulz V., Phys. in Med. and

Biology 61, 3500 (2016).

13. Law D., Dove D., D’Ambrosia J., Hajduczenia M., Laubach M., Carlson S., IEEE Commun.

Magazine 51, 88 (2013).

14. Abragam A., The principles of nuclear magnetism (Oxford university press, 1961).

15. Slichter C. P., Principles of magnetic resonance (Springer Science & Business Media, 2013).

Magnetic Resonance in Solids. Electronic Journal. 2025, Vol. 27, No 3, 25310 (13 pp.) 13

	MRSej_25310.pdf
	Introduction
	Devices control system
	Device control unit
	Programmator
	Base principals
	Design

	Instruction words and control bus structure
	Device control unit verification
	Conclusion

