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The functions transforming according to the nonequivalent irreducible representations (IR) 2 ,  3  

and 6 ,  7  have been found using the projection operators of the IR DS of the full rotation group on 

the subspaces of IR of ,T  T   and ,hT  hT   cubic groups. With allowance for the properties with 

respect to the operation of the time reversal sign, the functions are combined into representations 23  

and 67 ,  respectively, of twice the larger dimension. Along with the functions transforming 

according to all other IRs 1,  4  and 5  presented earlier, they will facilitate the consideration of 
various kinds of effects due to the energy level splitting of rare-earth ions in the crystal electric fields 
of ,T  and hT  group symmetry. 

PACS: 31.15.xh, 71.70.Сh, 75.10.Dg, 76.30.Kg. 

Keywords: crystal electrical fields, cubic T and Th groups, function of irreducible representations, rare earth, 
EPR, inelastic neutron scattering spectra. 

1. Introduction
Recently a large amount of work has been invested in the rare-earth (RE) compounds, in which the
local point symmetry for RE ions is Th. As examples of such compounds, it is possible to name the filled
skutterudite compounds (FS) with the formula RT4X12 or doped unfilled skutterudite, such as CoSb3.
In FS R is RE or actinide, T is a transition metal (Fe, Ru, Os) and X is a pnictogen (P, As, Sb) [1].
FS crystallize in the LaFe4P12 structure with space group Im3 and local point symmetry Th for the R
ions. The R ions are located at the corners and body center of the cubic lattice, each of which is
surrounded by a simple cube of 8 transition metal atoms at the 8c site and by a slightly deformed
icosahedron of 12 pnictogen atoms at the 24g Wyckoff sites.

The notably mounting interests and efforts in studying the FS compounds, e.g. are motivated by the 
remarkable diversity of their electronic and magnetic ground states, including multipole ordering 
[2, 3], small gap insulators [4, 5], conventional superconductivity [6], unconventional superconduc-
tivity [7, 8], and magnetic ordering [9-13]. Despite the large differences in their physical properties, 
these compounds are governed by only a few parameters, including the interaction between the 
conduction and the 4f shell electrons (c-f coupling) and the effect of the crystal electric field (CEF) 
potential on the RE3+ 4f electrons [2-13]. Owing to their unique structure, a subtle modification on 
composition can result in a different CEF scheme and thus a completely different ground state. 

Most of the important properties of other compounds as well, which include the RE ions, are also 
mainly determined by the behavior of the latter in CEF. The RE ions located in a crystal largely 
preserve their individuality, and the action of the crystal field leads to the splitting of their multiplet 
energy levels. The pattern of this splitting in transparent crystals is determined from the optical spectra 
of luminescence and absorption in the infrared and visible bands, while experiments to measure 
magnetic susceptibility, electron paramagnetic resonance (EPR) and inelastic magnetic neutron 
scattering are used in opaque crystals to establish this pattern. To identify the observed Stark structure 
of the energy levels, e.g., from EPR and optical spectra, or magnetic neutron scattering, it is necessary 
to theoretically calculate the positions of the CEF levels and the intensity of the assumed transitions, 
and then to compare them with the corresponding experimental values. 

Short cite this: Magn. Reson. Solids 21, 19108 (2019) doi: 10.26907/mrsej-19108
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The necessary computations can be greatly simplified by using as the eigenfunctions of multiplets 
of RE ions not simply the functions | JJM   of the total angular momentum J and its projection on the 

selected axis MJ, but their linear combinations, which implement the IR of the CEF point group. Such 
functions transforming according to all IR of all 32 crystal point groups (CPG) were found by author 
in 1968 [14]. In addition to the basis functions, tables [14] contain expansion formulas of all IR of the 
full rotation group (FRG) to D17/2, inclusive, over IR of CPG (compatibility relations between the FRG 
and the CPG) making it possible to immediately answer the question to how many and what energy 
levels each multiplet of one or another RE ion in CEF of a given symmetry group is split. Many other 
CPG characteristics, such as expansion tables of IR direct products (multiplication tables), coupling 
coefficients, facilitating the calculations were presented in the book [15]. 

For example, it can be seen from the comparison of octahedron group О (432) and tetrahedron 
group Т (23) that Т is a subgroup of the О group and due to the absence in it of rotations by the angle 
of /2 around the fourfold axes and the rotations by the angle of  around the twofold axes 
perpendicular to them the number of elements of the group Т reduces from 24 to 12. This entails the 
changes in the number and properties of IR. If the octahedron group О has five representations: singlet 
1 (identity representation), singlet 2, doublet 3, triplet 4, triplet 5, and also the double group O  
has three representations: doublet 6, doublet 7, and quartet 8 (here and below for IR we use the 
Bethe notation system [16]), in the tetrahedron group Т IRs are as follows: singlet 1  (identity 

representation), singlet 2 ,  singlet 3 ,  triplet 4 ,  and three representations of the double group :T   

doublet 5 ,  doublet 6  and doublet 7.  The 2  and 3  singlets, and the 6  and 7  doublets have 

complex conjugate characters and are degenerate each other, respectively, by the time reversal 
symmetry. Therefore, the corresponding representations have always to be combined in physical 
applications: 2  and 3  singlets are considered together as the 23  singlet-paired doublet and 6  and 

7  doublets are considered as the 67  doublet-paired quartet. In this respect, the splitting patterns of 

(2 J  1) multiples of RE ions by CEF of O group and T group symmetry are similar: the number of 
Stark-sublevels and the degeneracy of each sublevel are the same. However, due to the fact that IR 2 
of the O group at the transition to the T subgroup transforms into IR 1  of the T group, the identity IRs 
(invariants) of the T group in expansions of IR DJ of the FRG will be met oftener than IR 1  

(invariants) of the О group. In particular, at the expansion of the IR D3, the invariant 2 2
3 3

1
2 (Y Y )  

appears, and in the expansion of IR D6 not one as in the О group but two invariants will be present [14]: 

 0 4 4
6 6 6

1 7
Y (Y Y )

8 16
 

  
 

     and     2 2 6 6
6 6 6 6

11 5
(Y Y ) (Y Y )

32 32
  

   
 

. 

The eigenvalues and eigenfunctions of RE ions in CEF of T group will differ from the 
corresponding quantities in the CEF of the O group, because now they will have to be found from the 
diagonalization of higher order matrices, in which the states of the same IR will be coupled. For 
example, two different IR 4 and 5 of O group become the same representation 4  of the T group, 

analogously, two different IR 6  and 7  of the O  group transform into one representation 5  of the 

T   group. The transformed eigenfunctions, naturally, result in the change of the selection rules and 
intensities of the possible transitions. 

All these considerations were known to researchers involved in EPR and optical spectroscopy of 
crystals containing RE ions, however, they remained unclaimed, since there were no compounds in the 
field of view of physicists, in which RE ions would be in positions with CEF with the symmetry of 
either T or Th groups. The situation changed after in 2001, Takegara et al [17] indicated two types of 
compounds, in which RE ions are subjected to CEF with symmetry of the group Th. One of the 
compounds is the filled skutterudite with the general formula RT4X12, and the second compound is 
RPd3S4 crystallizing in the structure of the NaPt3O4 type. The authors [17] emphasized the presence of 
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the additional six-order term in the Hamiltonian of the interaction of RE ion with CEF having the Th 
group symmetry 

     6
6 2 62 6 6 66

5
( )

11
tB C C C C 
 

   
 

   ( kqC  is the operator of the spherical function), 

which is absent in CEF of O, Td and Oh groups. Their work stimulated the emergence of a large 

number of studies, in which the value of the 6
tB  parameter was determined and the effect of the 

additional term on magnetic scattering of neutrons [18, 19], EPR spectra [20, 21], and other properties 
of the considered compounds [22] was analyzed. 

To facilitate the necessary computations, it is advisable to use the functions of multiplets of RE 
ions, published in [14]. However, in the tables with functions that are transformed according to the 
representations 23  and 67  of the cubic T  and hT  groups, the transformations were carried out, 

which led to the loss of the properties of the rows of the initial IR 2  and 3  singlets and 6  and 7  

doublets. The fact is that in physical applications of the theory of some groups, the complex conjugate 
nonequivalent IR they have, due to the properties of the functions transformed according to them, with 
respect to the time reversal operation, should be combined into representations of twice the 
dimension [23]. The cubic T  and hT  groups have such IR 2  and 3  singlets and 6  and 7  

doublets. The author [14] performed the necessary unifications and in addition, combined the basis 
functions in the spaces of the united representations so as to obtain their simpler expressions. As a 
result, new functions have lost their properties of IR of T  and hT  groups and transformed essentially 

into the basis functions of IR 3 and 8 of O  and O  groups, respectively. 

The purpose of this work is to present tables of correct functions that are transformed by 
representations 23  and 67  of T  and hT  groups, in which the functions IR 2  and 3  and IR 6  

and 7  would be simply united into representations of twice the larger dimension without any 

additional transformations of the basis functions. 

In the proposed tables, we will follow the same system of notations as was used in [14]. Namely, 
each function j  transforming as the j-th component of some IR   is a linear combination of the 

form ,j
m

j Sm
m

a     where the functions ,Sm  perform IR DS of the rotation group and are 

transformed as the eigenfunctions of the operator of angular momentum. The subscript S corresponds 
to the value of the angular momentum and m its projection on the selected axis. To reduce the size of 

the tables, we present not the coefficients themselves, ,m
ja  but the squares of their absolute values 

2| | ,m
j ma C   which are simple denoted as Cm, omitting the subscripts of the representation and its 

components, because they are fixed on the left of each function. If the coefficients m
ja  are imaginary, 

the asterisk is put on the top left at the quantity Cm. Its presence requires the multiplication by the 

imaginary unity “i” of the coefficient ,m
ja  which is obtained after extracting the positive square root 

of the corresponding value Cm. The cases when the square roots should be taken with a negative sign 
are indicated by asterisks from the top left of the corresponding numerical Cm values. Tables show only 
the nonzero Cm values. If in the expansion of any IR DS of the rotation group the same IR of T  and hT  

groups are met several times, the functions of different similar representations are numbered with 1, 2, 3, 
which are put on the top left of the number denoting the representation. The transformation properties of 
the found functions are fixed by IR of the T  group, the number of which is written in the second 
column. The component of the representation is indicated following it. For the sake of abbreviation, 
representations are simply indicated by their number . For the same reasons, the component of the 
representation is simply denoted by the corresponding number 1, 2. The number of IR of the O  group, at 
the expansion of which these representations of its T  subgroup appear, is given in the first column. 
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2. Tables of functions of T group 
In the Tables below, the basis functions for the T  group can be objects of any nature with respect to 
spatial inversion. For the hT  group, in the case of even objects with respect to spatial inversion, add 

the index "g" and the index "u" for odd objects to the notations of all IRs. 

S = 3/2 3/2 67D    

8  67  6  1 C−1/2 = 1/2   *C3/2 = *1/2 

   2 C1/2 = 1/2    *C−3/2 = *1/2 

  7  1 C−1/2 = 1/2   *C3/2 = 1/2 

  2 C1/2 = 1/2    *C−3/2 = 1/2 

S = 2 2 23 4D       

3   23  2  1 C0 = 1/2   *C2 = 1/4    *C−2 = 1/4 

  3  1 C0 = 1/2   *C2 = *1/4    *C−2 = *1/4 

S = 5/2 5/2 5 67D       

8   67  6  1 C−1/2 = *1/2   *C3/2 = 1/12     *C−5/2 = 5/12 

   2 C1/2 = 1/2     *C−3/2 = *1/12    *C5/2 = *5/12 

  7  1 C−1/2 = *1/2   *C3/2 = *1/12    *C−5/2 = *5/12 

   2 C1/2 = 1/2      *C−3/2 = 1/12    *C5/2 = 5/12 

S = 3 3 1 42D       

2    1  1 C2 = 1/2    C−2 = *1/2 

S = 7/2 7/2 5 672 + D      

8   67  6  1 C−1/2 = *5/24   C7/2 = 7/24    *C3/2 = *3/8    *C−5/2 = *1/8 

   2 C1/2 = *5/24    C−7/2 = 7/24   *C−3/2 = *3/8    *C5/2 = *1/8 

  7  1 C−1/2 = *5/24   C7/2 = 7/24    *C3/2 = 3/8     *C−5/2 = 1/8 

   2 C1/2 = *5/24    C−7/2 = 7/24     *C−3/2 = 3/8    *C5/2 = 1/8 

S = 4 4 1 23 4 2D          

3   23  2  1 C4 = C−4 = 7/48    C0 = *5/24   *C2 = 1/4   *C−2 = 1/4 

  3  1 C4 = C−4 = 7/48    C0 = *5/24   *C2 = *1/4   *C−2 = *1/4 

S = 9/2 9/2 5 67+ 2D      

18  167  16  1 C7/2 = *7/32   C−9/2 = 7/32    C−1/2 = *1/16    *C3/2 = *1/2     

   2 C9/2 = *7/32    C−7/2 = 7/32    C1/2 = 1/16       *C−3/2 = 1/2 

  17  1 C7/2 = *7/32    C−9/2= 7/32     C−1/2 = *1/16     *C3/2 = 1/2 

   2 C9/2 = *7/32    C−7/2 = 7/32    C1/2 = 1/16       *C−3/2 = *1/2 
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28  267  26  1 C7/2 = 25/96    C−1/2 = *7/48   C−9/2 = 3/32      *C−5/2 = *1/2 

   2 C9/2 = *3/32   C1/2 = 7/48     C−7/2 = *25/96  *C5/2 = 1/2 

  27  1 C7/2 = 25/96    C−1/2 = *7/48   C−9/2 = 3/32      *C−5/2 = 1/2 

   2 C9/2 = *3/32   C1/2 = 7/48     C−7/2 = *25/96  *C5/2 = *1/2 

S = 5 5 23 43D       

3  23  2  1 C4 = 1/4    C−4 = *1/4    *C2 = *1/4   *C−2 = 1/4 

  3  1 C4 = 1/4    C−4 = *1/4    *C2 = 1/4     *C−2 = *1/4 

S = 11/2 11/2 5 672 + 2D      

18  167  16  1 C7/2 = *1/12   C−9/2 = 5/12    *C3/2 = *1/6   *C−5/2 = 1/3 

   2 C9/2 = 5/12     C−7/2 = *1/12   *C5/2 = 1/3     *C−3/2 = *1/6 

  17  1 C7/2 = *1/12   C−9/2 = 5/12    *C3/2 = 1/6     *C−5/2 = *1/3 

   2 C9/2 = 5/12     C−7/2 = *1/12   *C5/2 = *1/3   *C−3/2 = 1/6 

28  267  26  1 C7/2 = 5/96     C−1/2 = 7/16   C−9/2 = 1/96    *C11/2 = *11/32 

    *C3/2 = *5/48    *C−5/2 = *5/96 

   2 C9/2 = 1/96    C1/2 = 7/16    C−7/2 = 5/96   *C5/2 = *1/24 

    *C−3/2 = *5/48    *C11/2 = *11/32 

  27  1 C7/2 = 5/96     C−1/2 = 7/16   C−9/2 = 1/96    *C11/2 = 11/32 

    *C3/2 = 5/48     *C−5/2 = 5/96 

   2 C9/2 = 1/96    C1/2 = 7/16    C−7/2 = 5/96    *C5/2 = 1/24 

    *C−3/2 = 5/48    *C11/2 = 11/32 

S = 6 6 1 23 42 3D          

1  11  1 C0 = *1/8    C4 = 7/16    C−4 = 7/16 

2   21  1 C2 = *11/32    C−2 = *11/32    C6 = 5/32    C−6 = 5/32    

3  23  2  1 C0 = 7/16    C4 = 1/32    C−4 = 1/32    *C2 = 5/64    *C−2 = 5/64 

    *C6 = 11/64    *C−6 = 11/64 

  3  1 C0 = 7/16    C4 = 1/32    C−4 = 1/32    *C2 = *5/64     *C−2 = *5/64 

    *C6 = *11/64    *C−6 = *11/64 
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S = 13/2 13/2 5 673 + 2D      

18  167  16  1 C7/2 = 11/28    C−9/2 = *3/28 

    *C11/2 = 169/772    *C3/2 = *33/224    *C−5/2 = 55/772    *C−13/2 = *13/772 

   2 C9/2 = 3/28    C−7/2 = *11/28 

    *C13/2 = 33/772    *C5/2 = *55/772    *C−3/2 = 33/224    *C−11/2 = *169/772 

  17  1 C7/2 = 11/28    C−9/2 = *3/28 

    *C11/2 = *169/772    *C3/2 = 33/224    *C−5/2 = *55/772    *C−13/2 = 13/772 

   2 C9/2 = 3/28     C−7/2 = *11/28 

    *C13/2 = *33/772    *C5/2 = 55/772    *C−3/2 = *33/224    *C−11/2 = 169/772 

28  267  26  1 C7/2 = *3/224    C−1/2 = *7/16    C−9/2 = *11/224     

    *C11/2 = 11/448    *C3/2 = 25/448    *C−5/2 = 45/448    *C−13/2 = 143/448 

   2 C9/2 = 11/224    C1/2 = 7/16    C−7/2 = 3/224 

    *C13/2 = *143/448    *C5/2 = *45/448    *C−3/2 = *25/448    *C−11/2 = *11/448 

  27  1 C7/2 = *3/224    C−1/2 = *7/16    C−9/2 = *11/224 

    *C11/2 = *11/448    *C3/2 =*25/448    *C−5/2 =*45/448    *C−13/2 = *143/448 

   2 C9/2 = 11/224    C1/2 = 7/16    C−7/2 = 3/224 

    *C13/2 = 143/448    *C5/2 = 45/448    *C−3/2 = 25/448    *C−11/2 = 11/448 

S = 7 7 1 23 44D          

3  23  2  1 C4 = 1/4    C−4 = *1/4    *C2 = 11/96    *C−2 = *11/96    *C6 = *13/96 

    *C−6 = 13/96 

  3  1 C4 = 1/4    C−4 = *1/4    *C2 = *11/96    *C−2 = 11/96    *C6 = 13/96 

    *C−6 = *13/96 

S = 15/2 15/2 5 672 + 3D      

18  167  16  1 C15/2 = 1001/3072   C7/2 = *55/1024   C−1/2 = *105/1024   C−9/2 = *55/3072 

    *C3/2 = *5/16   *C−5/2 =*3/16 

   2 C9/2 = *55/3072   C1/2 =*105/1024   C−7/2 = *55/1024   C−15/2 = 1001/3072 

    *C5/2 = *3/16   *C−3/2 = *5/16 

  17  1 C15/2 = 1001/3072   C7/2 = *55/1024   C−1/2 = *105/1024   C−9/2 = *55/3072 

    *C3/2 = 5/16   *C−5/2 =3/16 

   2 C9/2 = *55/3072    C1/2 =*105/1024   C−7/2 = *55/1024   C−15/2 = 1001/3072 

    *C5/2 = 3/16   *C−3/2 = 5/16 
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28  267  26  1 C15/2 = 5/1024   C7/2 = 273/1024   C−1/2 = *143/1024   C−9/2 = 91/1024 

    *C11/2 = *7/16    *C−13/2 = *1/16 

   2 C9/2 = 91/1024   C1/2 = *143/1024   C−7/2 = 273/1024   C−15/2 = 5/1024 

    *C13/2 = *1/16   *C−11/2 = *7/16 

  27  1 C15/2 = 5/1024   C7/2 = 273/1024   C−1/2 = *143/1024   C−9/2 = 91/1024 

    *C11/2 = 7/16    *C−13/2 = 1/16 

   2 C9/2 = 91/1024   C1/2 = *143/1024   C−7/2 = 273/1024   C−15/2 = 5/1024 

    *C13/2 = 1/16   *C−11/2 = 7/16 

38  367  36  1 C7/2 = *1/8   C−9/2 = 3/8 

    *C11/2 = *13/384   *C3/2 = 11/128   *C−5/2 = *55/384   *C−13/2 = 91/ 384 

   2 C9/2 = 3/8     C−7/2 = *1/8    

    *C13/2 = 91/384   *C5/2 = *55/384   *C−3/2 = 11/128   *C−11/2 = *13/384 

  37  1 C7/2 = *1/8   C−9/2 = 3/8 

    *C11/2 = 13/384   *C3/2 = *11/128   *C−5/2 = 55/384   *C−13/2 = *91/ 384 

   2 C9/2 = 3/8     C−7/2 = *1/8 

    *C13/2 = *91/384   *C5/2 = 55/384   *C−3/2 = *11/128   *C−11/2 = 13/384 

S = 8 8 1 23 42 4D          

13  123  12  1 C8 = 5/2048   C−8 = 5/2048   C4 = 91/512   C−4 = 91/512   C0 = *143/1024 

    *C6 = 1/4    *C−6 = 1/4 

  13  1 C8 = 5/2048   C−8 = 5/2048   C4 = 91/512   C−4 = *91/512   C0 = *143/1024 

    *C6 = *1/4    *C−6 = *1/4 

23  2 23  2 2  1 C8 = 1001/6144   C−8 = 1001/6144   C4 = *55/1536   C−4 = *55/1536 

    C0 = *105/1024   *C2 = 1/4   *C−2 = 1/4 

  23  1 C8 = 1001/6144   C−8 = 1001/6144   C4 = *55/1536   C−4 = *55/1536 

    C0 = *105/1024   *C2 = *1/4   *C−2 = *1/4 

S = 17/2 17/2 5 673 3D       

18  167  16  1 C15/2 = 1001/55296   C7/2 = *275/13824   C−1/2 = *105/1024   C−9/2 = *715/13824 

    C−17/2 = 17017/55296   *C3/2 = *7/36   *C−5/2 = *11/36    

   2 C17/2 = *17017/55296   C9/2 = 715/13824   C1/2 = 105/1024   C−7/2 = 275/13824 

    C−15/2 = *1001/3072   *C5/2 = 11/36   *C−3/2 = 7/36   
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  17  1 C15/2 = 1001/55296   C7/2 = *275/13824   C−1/2 = *105/1024   C−9/2 = *715/13824 

    C−17/2 = 17017/55296   *C3/2 = 7/36   *C−5/2 =11/36    

   2 C17/2 = *17017/55296   C9/2 = 715/13824    C1/2 = 105/1024   C−7/2 = 275/13824 

    C−15/2 = *1001/3072   *C5/2 = *11/36   *C−3/2 = *7/36   

28  267  26  1 C15/2 = 5/18432   C7/2 = 455/4608   C−1/2 = *143/1024   C−9/2 = 1183/ 4608 

    C−17/2 = 85/18432   *C11/2 = *1/12   *C−13/2 =*5/12 

   2 C17/2 = *85/18432   C9/2 = *1183/4608    C1/2 = 143/1024   C−7/2 = *455/4608 

    C−15/2 = *5/18432   *C13/2 = 5/12   *C−11/2 = 1/12   

  27  1 C15/2 = 5/18432   C7/2 = 455/4608   C−1/2 = *143/1024   C−9/2 = 1183/4608 

    C−17/2 = 85/18432   *C11/2 = 1/12   *C−13/2 = 5/12    

   2 C17/2 = *85/18432   C9/2 = *1183/4608    C1/2 = 143/1024   C−7/2 = *455/4608 

    C−15/2 = *5/18432   *C13/2 = *5/12   *C−11/2 = *1/12 

38  367  36  1 C15/2 = *289/864   C7/2 = *91/864    C−9/2 = 35/864   C−17/2 = 17/864 

    *C11/2 = *5/64   *C3/2 = *143/576   *C−5/2 = 91/576   *C−13/2 = 1/ 64 

   2 C17/2 = *17/ 864   C9/2 = *35/864    C−7/2 = 91/864   C−15/2 = 289/864 

    *C13/2 = *1/64   *C5/2 = *91/576   *C−3/2 = 143/576   *C−11/2 = 5/64 

  37  1 C15/2 = *289/864   C7/2 = *91/864    C−9/2 = 35/864   C−17/2 = 17/864 

    *C11/2 = 5/64   *C3/2 = 143/576   *C−5/2 = *91/576   *C−13/2 = *1/ 64 

   2 C17/2 = *17/ 864   C9/2 = *35/864    C−7/2 = 91/864   C−15/2 = 289/864 

    *C13/2 = 1/64   *C5/2 = 91/576   *C−3/2 = *143/576   *C−11/2 = *5/64 

The functions transforming according to IR 1,  4 ,  and 5  of ,T  T   and ,hT  hT   groups were 

already given in [14]. 

Conclusion 

Tables of functions transforming according to 23  and 67  representations of T, T   and ,hT  hT   cubic 

groups are given. The functions obtained by projecting IR DS of the rotation group on subspaces of IR 

2 ,  3  and 6 ,  7  of ,T  T   and ,hT  hT   cubic groups are simply united into 23  and 67
representations. Such functions contain all the information that distinguishes ,T  T   and ,hT  hT   groups 

from O, ,O  ,dT  dT   and ,hO  hO  groups of the higher cubic symmetry, and make it possible to 

consider the effects due to the additional term of the six-order CEF potential. 
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