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The detailed calculations of dependence of the frequency of oscillations on the external magnetic

field and on the shape of ferromagnet sample with interacting electronic and nuclear subsystems

were done. Such system possesses a discrete number of eigenfrequencies of precession of mag-

netization. It is shown that these magnetostatic eigenmodes can be degenerated, i. e. different

modes can have the same frequency. The dependence of these degenerated modes on the sample

shape is investigated. It is shown that the properties of magnetization precession and even the

number of eigenmodes depend on the external magnetic field and on the shape of the sample.

These effects may produce specific features on the NMR spectra of magnetic materials.

PACS: 76.60.-k, 75.78.-n

Keywords: Electron-nuclear interaction, magnetostatic boundary conditions, NMR

1. Introduction

Nuclear magnetic resonance (NMR) is one of the most effective methods of investigation of local

electronic and spin density distribution [1]. But analysis of NMR signals from magnetic ordered

systems is a quite complicated problem because of some specific features. Firstly, NMR fre-

quency in magnetic solids is defined mainly by local magnetization, the value of which can differ

significantly from external magnetic field. Secondly, resonance transitions of nuclear spins are

induced mainly by variable part of electronic magnetization. Small perturbating field produces

quite a big oscillations of hyperfine field, which is proportional to the dynamic part of electronic

susceptibility at the NMR frequency. It is the effect of amplification of magnetic field (the value

of amplification factor usually is about 10− 103). Thirdly, at the low temperatures the indirect

Suhl-Nakomura interaction (SNI) between nuclear spins plays an important role in magnetic

dynamics [2]. It effects in substantial broadening of NMR line and in dynamic frequency shift

(pulling). The value of pulling depends on the temperature and on the amplitude of nuclear

magnetization. The broadening of NMR line and frequency pulling produce specific features in

the system dynamics. For example, as it was shown in [3,4], the relaxation in nuclear subsystem

can be produced through relaxation in electronic subsystem. In this case the absolute value of

nuclear magnetization remains constant and hence, the relaxation differs from the Bloch type.

In addition, the dependence of NMR frequency in magnets on the amplitude of nuclear mag-

netization determines nonlinear properties of the nuclear spin system. It leads to appearance

of specific characteristics in NMR absorption and dispersion signals [4]. SNI also can effect in

correlated motion of nuclear spins (nuclear spin oscillations and waves).

In this paper we are interesting in two problems. The first problem is the interaction be-

tween electronic and nuclear subsystems in ferromagnet sample and the second one is the effect

of boundaries of the sample (and demagnetization factors, in particular) to the magnetic proper-

ties of the system. The investigation of interaction between different subsystems in ferromagnets
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and ferromagnet based layered structures is one of the modern direction in the field of magnetic

phenomena physics. For example, the book [5] is devoted to the theoretical investigation of

interaction between acoustic and spin waves. Here the interaction between electronic and nu-

clear system is studied. In this case amplification factor, frequency pulling, relaxation and other

NMR characteristics are defined by the spectrum and by the dynamic susceptibility of electronic

subsystem. If we deal with samples of finite size, the boundary effects and demagnetization fac-

tors change significantly the dynamic properties of electronic subsystem. The Maxwell equations

have to be taken into account to describe this situation. But in the case of slow variable magnetic

oscillation at the NMR frequency this equations can be used in magnetostatic approximation

with corresponding boundary conditions. The boundary effects produce specific properties of

the magnetostatic waves propagating in the system and a number of papers are devoted only

to the investigaion of the properties of electronic subsystem. For example, some manuscripts

are devoted only to the investigation of spectrum of magnetostatic wave in ferromagnet films

and layered structures [6]. Some other works are devoted entirely to the investigation of the

properties of ferromagnetic resonance (FMR) in different magnetic media (ferro- and antifer-

romagnets, ferrites, layered structures, etc.) [7]. Even the study of the FMR linewidth in the

sample of finite size (in particular, in layered structures) is a quite complicated problem [8]. The

another effect of boundaries is the appearance of discrete number of additional magnetostatic

modes near the ferromagnetic resonance (FMR) frequency. It is brightly expressed in the case

of samples, limited in all three dimentions, in particular, in spherical samples [9]. The spectrum

of electronic subsystem has additional maxima. This should be manifested in appearance of fine

structure in frequency pulling in nuclear subsystem. In other words, the nuclear magnetostatic

modes can be observed. The first experemental observation of such modes was done in 1966 [10]

and first theoretical description was suggested in 1967 [11] for the nuclear magnetostatic modes

of Mn55 in MnFe2O3 compound with spinel structure. Further such effects have been observed

also in two-sublattice antiferromagnet MnF2 [12].

In this paper we present the results of theoretical investigation of coupled precession of elec-

tronic and nuclear magnetization in the samples of spheroidal shape. We show that eigenmodes

of precession of magnetization have a fine structure. For the samples with some shape in the

external magnetic field these eigenmodes can be divided into two well separated groups, first of

them can be considered as nuclear eigenmodes, and second as electronic ones. For other sam-

ples and magnetic fields nuclear and electronic eigenmodes become mixed. In addition, it was

shown [3,4] that at low temperatures some NMR effects, produced by homogeneous oscillations

of nuclear magnetization can be observed. This paper shows, that the precession of nuclear

magnetization may also demonstrate complicated structure and may have interesting specifics

if we deal with the samples of the finite size.

2. Model

Lets consider ferromagnet sample of spheroidal shape. Suppose also that all nuclei have magnetic

moment. The energy of the system can be written as

F = ÂMm−MzHA −H0(Mz +mz)− hx(Mx +mx)− hy(My +my)

+
1

2
[Nx(Mx +mx)2 +Ny(My +my)

2 +Nz(Mz +mz)
2].

(1)

Here M and m are the electronic and nuclear magnetization. The first term in Eq. (1) describes

the hyperfine interaction between electronic and nuclear spins, the second one is the easy-

axis anisotropy energy. The interaction with external constant H0 = (0, 0, H0) and variable
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h = (hx, hy, 0) magnetic field is taken into account. The last term is the demagnetization energy

of ellipsoid. The sample under investigation is supposed to be of spheroidal shape. The boundary

of the sample is defined as
x2 + y2

a2
+
z2

b2
= 1. (2)

It is convinient to use shape parameter α = a/b. We deal with oblate spheroid if α > 1, and

with oblong one if α < 1. The expressions for demagnetization factors Nx,y,z for spheroids

depend on the parameter α and can be found in [13]. It follows from the symmetry that

Nx = Ny = (4π −Nz)/2 for spheroids (α 6= 1) and Nx = Ny = Nz = 4π/3 for sphere (α→ 1).

The motion of magnetization is described in terms of Maxwell equations, but in the case of

frequencies at the vicinity of NMR the magnetostatic approximations can be used:

[∇,h] = 0,

(∇,h + 4π(M + m)) = (∇,h + 4πχ̂h) = (∇, µ̂h) = 0,
(3)

where χ̂ is the magnetic susceptibility tensor and µ̂ is the permeability tensor. The solution of

first equation (3) is h = ∇ψ, where ψ is the magnetostatic potential, and the second one gives

Walker equation [9]

µ

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+
∂2ψ

∂z2
= 0. (4)

Here µ = 1 + 4πχxx and iµ1 = χxy are diagonal and off-diagonal components of permeability

tensor, which can be obtained by solving the system of linearized Landau-Lifshitz and Bloch

equations for electronic and nuclear magnetization

dM

dt
= −γe[M,HM],

dm

dt
= γn[m,Hm], (5)

where γe and γn are electronic and nuclear gyromagnetic ratios (the signs of gyromagnetic ratios

are taken into account in Eq. (5), hence γe > 0, γn > 0 in our notations), and

HM = − ∂F
∂M

, Hm = − ∂F
∂m

(6)

are effective magnetic fields acting on the electronic and nuclear magnetization respectively. We

neglect the Hilbert and Bloch dissipation terms in Eq. (5) for simplicity. The expressions for

µ and µ1 in the linear approximation contain two additive contributions from electronic and

nuclear magnetization subsystems and they are not shown here because of their unwieldy. It is

important that effective fields HM and Hm depend on the demagnetization factors Nx,y,z. That

is why the components of permeability tensor µ and µ1 depend on the Nx,y,z, which, in turn,

depend on the shape parameter α. In other words, we take into account the shape of the sample

through the demagnetization factors.

Outside the sample we have µ = 1, µ1 = 0 and Walker equation (4) transforms to the

Laplace one. Next we will construct solution of Eq. (4) inside and outside the sample, supposing

magnetostatic potential ψ to be limited everywhere and equal to zero at the infinity. The

magnetostatic boundary conditions require the continuousness of the tangential components of

magnetic field h = ∇ψ and normal components of magnetic induction b = h + 4π(M + m) at

the boundary of the sample. It leads to the dispersion equation, which is constructed as follows.
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The solution of Laplace equation outside the sample can be written as

ψout = eimφ(ar)−n−1P |m|n (cos(θ)), a/b = 1, (7)

ψout = eimφQmn (iξ)P |m|n (η), a/b > 1, (8)

ψout = eimφQmn (ξ)P |m|n (η), a/b < 1, (9)

where Pmn and Qmn are the Legendre functions of the first and second kind, r, θ, φ are the spherical

coordinates, and ξ, η, φ are the spheroidal coordinates, which are defined as

x =
d

2

√
ξ2 + 1

√
1− η2 cosφ, y =

d

2

√
ξ2 + 1

√
1− η2 sinφ, z =

d

2
ξη, a/b > 1, (10)

x =
d

2

√
ξ2 − 1

√
1− η2 cosφ, y =

d

2

√
ξ2 − 1

√
1− η2 sinφ, z =

d

2
ξη, a/b < 1 (11)

for oblate and oblong spheroid correspondingly, d =
√
|a2 − b2| is the distance between two

foci. The boundary of the sample is defined as r = 1 for the case of spherical sample and as

ξ = ξ0 =
1√
|α2 − 1|

for spheroids. The solution of Walker equation inside the sample can be

written as follows

ψin = Cnme
imφ

π∫
−π

Pn
(
βr(
√
−µ cos θ + sin θ cosu)

)
cos(mu) du, (12)

with β = −(1− µ)−1/2 for the spherical sample and

ψin = Cnme
imφ

π∫
−π

Pn

(
β(−
√
−µξη +

√
1 + ξ2

√
1− η2 cosu)

)
cos(mu) du, (13)

with β = (1− ξ20(µ− 1))−1/2 for oblate spheroid. The same formula (13) is used for oblong

spheroid, but one should change
√

1 + ξ2 →
√
ξ2 − 1 and β = (−1− ξ20(µ− 1))−1/2 in this case.

The continuousness of tangential components of magnetic field h = ∇ψ at the boundary ξ = ξ0
(or r = 1) requires the coefficients

Cnm =
1

2π

(n+ |m|)!
(n− |m|)!

K

Pmn (S)
, (14)

where K = 1 for α = 1, K = Qmn (iξ0) for α > 1 and K = Qmn (ξ0) for α < 1. The continuousness

of normal components of magnetic induction b = µ̂h gives the characteristic equation

L(ξ0) + S
d

dS
ln(P |m|n (S))− µ1m

α2
= 0, (15)

where L(ξ0) = n + 1 for the case of sphere (α = 1), L(ξ0) = −iξ0
d

d(iξ0)
ln(Q|m|n (iξ0)) and

L(ξ0) = −ξ0
d

dξ0
ln(Q|m|n (ξ0)) for the case of oblate (α > 1) and oblong (α < 1) spheroid. The

new variable S is defined as S = S(ω) = −
√
−µ√

α2 − µ
. Note, that S locates in the (−1, 0) interval

if µ < 0, in the (−∞,−1) region if µ > α2, and S is imaginary if 0 < µ < α2. All these three

cases should be considered separately because of the specifics of calculation of Legendre func-

tions Pmn (S). Note, that the dependence on shape parameter in Eq. (15) is twofold. It is the

explicit dependence: S depends on α, and the implicit one, because µ and µ1 are the functions

of α through the demagnetization factors. The solution of characteristic equation (15) gives the

eigenfrequencies of coupled oscillations of electronic and nuclear magnetization. Eq. (15) has

4 Magnetic Resonance in Solids. Electronic Journal. 2018, Vol. 20, No 1, 18104 (8 pp.)
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the three-indexed solution. First two indexes n,m follow from the boundary problem. The finite

solution corresponds to the indexes n = 1, 2, . . . and m = 0, 1, . . . n. Third index r numerates

the roots of Eq. (15) with given (n,m). The number of roots depends both on the (n,m) index

and the magnetic field H0 and the shape parameter α. In particular for the simplest eigenmode

(n,m) = (1, 1) Eq. (15) for usual experimentally used magnetic field H0 ∼ 3÷ 10 kOe and for

samples close to sphere has two well separated solutions, one of which refers to the electronic

oscillations and another to the nuclear oscillations.

3. Results

The structure of solutions of characteristic equation (15) depends on the value of magnetic field

H0 and on the shape parameter α. For some values (H0, α) the eigenfrequencies of nuclear and

electronic modes are close to each other and it is difficult to separate one mode from another.

Such situation is demonstrated at Fig. 1 where the field dependence of lowest magnetostatic

modes in spherical sample is shown. For modes (n,m) = (1, 1), (2, 0), (2, 1), (2, 2) characteristic

equation (15) has two solutions if magnetic field H0 exceeds some value (Hn,m)crit. The lowest

branch represents nuclear mode and the highest is refered to the electronic one. Mode with

(n,m) = (6, 0) has six branches: three electronic modes and three nuclear modes. The third

index r is requaried to numerate the different eigenfrequencies. To construct Fig. 1 and the

next pictures the known parameters for ferromagnet MnFe2O4 were used: saturation magne-

tization is equal to M0 = 560 Oe, hyperfine fields are AM0 = 586 kOe and Am0 = 8 Oe (hence,

hyperfine constant is A = 1046 and nuclear magnetization m0 = 7.6 · 10−3 Oe), anisotropy field

is Ha = 1 kOe and gyromagnetic ratios are γe = 17.58 GHz/kOe, γn = 6.28×10−3 GHz/kOe [14].

H
0
, Oe

1200 1400 1600 1800 2000

ω
/ω

m

0

0.05

0.1

0.15 (a) α = 2

(n,m) = (2,2)
(n,m) = (1,1)
(n,m) = (2,0)
(n,m) = (2,1)

H
0
, Oe

1200 1400 1600 1800 2000

ω
/ω

m

0

0.05

0.1

0.15 (n,m) = (6,0)(b)

Figure 1. The dependence of electronic and nuclear magnetostatic modes on external magnetic field H0

for (n,m) = (1, 1), (2, 0), (2, 1), (2, 2) (a) and for (n,m) = 6, 0 (b)
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Figure 2. The separation of lowest nuclear oscillation modes from (1, 1) eigenmode versus external

magnetic field
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Figure 3. Dependence of magnetic field (a) and degenerated frequencies (b) on the shape parameter of

the sample

As can be seen from Fig. 1 the number of possible eigenmodes and their behavior depends

strongly on the magnetic field, especially if H ∼ Hcrit. The eigenmode with index (n,m) does

not exist if the value of magnetic field H0 less than Hcrit. The critical field Hcrit depends on

the indices (n,m, r) and can be calculated numerically. The investigation of specific properties

of the spectrum near this critical region is outside the frames of this paper. Now we restrict

ourselves in the situation of quite a big field H0, when nuclear and electronic modes are well

separated and we will take into account only nuclear modes. The simplest eigenmode has index

(n,m) = (1, 1). It is convenient to compare all other eigenmodes with (1, 1). The separation

∆ω = ωn,m − ω1,1 of lowest nuclear magnetastatic modes as a function of magnetic field is shown

in Fig. 2 for α = 0.8 (oblong spheroid) and α = 1.2 (oblate spheroid).

For (n,m) = (2, 0), (2, 2), (3, 0), (3, 2) and (3, 3) only one nuclear eigenmode exists (r = 1),

and for (n,m) = (3, 1) we have three eigenmodes (r = 1, 2, 3). So, the total number of nu-

clear eigenmodes with n ≤ 3 is equal to 9. Some specific features can be seen from Fig. 2.

Firstly, the frequency separation between eigenmodes decreases with the magnetic field H0. Sec-

ondly, the separation for the same field for oblong spheroid is smaller than for oblate spheroid.

Thirdly, some eigenmodes cross each other. In particular, mode (n,m) = (2, 2) crosses mode

(n,m, r) = (3, 1, 2) and mode (n,m, r) = (3, 1, 1) crosses mode (n,m) = (3, 3). Note, that cross-

point of the modes means the degenerating of eigenfrequencies: two different eigenmodes has

the same frequency in the same external magnetic field H0. If in addition we take into account

modes with n = 4 and m = 0, 1, 2, 3, 4 the total number of modes will be equal to 19 and the

number of crosspoints at the region of interest (α ∼ 1, H0 ∼ 1÷ 10 kOe) increases up to 10. But

it is obvious, that the structure of magnetic potential ψ becomes more complicated with the

increasing of number n (see (7)-(9) and (12),(13)). So, the structure of internal field h = ∇ψ
and magnetization M = χ̂h also becomes complicated. It seems that such structures can be

hardly observed in experiment and that is why we will not consider here the highest modes. But

we investigated in detail the crosspoints of modes (2, 2)-(3, 1, 2) and (3, 1, 1)-(3, 3). If the sam-

ple has spheroidal shape with given parameter α = a/b the crosspoint of modes occurs at some

fixed magnetic field H0. If the sample with another α is used, the crosspoint will be at another

value of magnetic field. The dependence of this field of degenerating on the shape parameter α

is shown at Fig. 3 (a). We took into account region of magnetic field H0 ∼ 2− 10 kOe, which

usually used in NMR experiments. The method of using the Fig. 3 (a) is the follows. If we have

the sample with given α we can find the magnetic degenerating field H0. One curve at Fig. 3 (a)

corresponds the ω22 = ω312 degeneration, and another one – the ω311 = ω33 degeneration. The

correspond eigenfrequency can be found from Fig. 3 (b). Of couse these eigenfrequencies are

6 Magnetic Resonance in Solids. Electronic Journal. 2018, Vol. 20, No 1, 18104 (8 pp.)
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about ω ∼ 580 MHz and they are close to the frequency of Mn55 nuclei in MnFe2O4 compound [1].

Note, that according to our model, the characteristic equation for eigenfrequencies has different

form for the case of oblong spheroid (α < 1) sphere (α = 1) and oblate spheroid (α > 1). But

the solution of this equation passes trough the point α = 1 smoothly and continuously. The

result is entirely predictable, because it is obvious, that the case of the spherical sample is not

the special from physical point of view.

4. Summary

The coupled oscillations of electronic and nuclear magnetization in spheroidal ferromagnet sam-

ples have interesting specific features. The characteristic equation for eigenfrequencies of pre-

cession of magnetization which takes into account magnetostatic boundary conditions has three

different forms for the cases of oblong spheroid (α < 1), sphere (α = 1) and oblate spheroid

(α > 1), but all dynamic characteristics of this precession change continuously with α. Since

we deal with three dimensional problem, the eigenvalues are given by three indices: n, m and

r, where n = 1, 2, . . . and m = 0, 1, . . . n follow from magnetostatic boundary conditions and r

is the root number of characteristic equation. The number of possible modes depends on the

external magnetic field and on the shape parameter. Each eigenmode has it’s own dependence

on the magnetic field. Different eigenmodes can cross each other at the special value of magnetic

field. Two different eigenmodes have the same eigenfrequency at this field of degenerating. The

dependence of field of degenerating of lowest eigenmodes on the shape of sample have been

studied. It was done using numerical analysis of the solutions of characteristic equation. The

corresponding frequencies of degenerated eigenmodes are also the functions of shape parameter.

They also have been obtained numerically. We investigated the dependence of eigenmodes on

the sample shape in this paper, but the alternative interpretation of our results is also possible.

The values µ, µ1 in characteristic equation depend on demagnetization factors Nx,y,z, where

Nx = Ny = (4π −Nz)/2 according to the symmetry. But the demagnetization factors are the

monotonic functions of the shape parameter α, namely Nz changes from 0 to 4π when α changes

from 0 to∞. It means, that the described research of dependence of magnetic properties on the

shape of the sample is equivalent to the research of demagnetization effects.

The important result of our investigation is that in the sample of spheroidal shape not one

but a discrete number of nuclear eigenfrequencies exist. These eigenmodes can be observed in

NMR experiment. Of course it is hard to identify index of the observed mode from NMR exper-

iment. But as it was shown, some of the lowest modes cross each other. So, if these crosspoints

of eigenmodes are obsered in experiment it may help to identify the index of modes and the type

of magnetic precession, that realized in the sample. The discreteness of eigenfrequencies also

can produce the specific properties of nonlinear NMR at the low temperatures especially if we

deal with a big value of perturbing magnetic field h. Such problem has been investigated in [4].

The main idea of the theory was the conservation of nuclear magnetic moment. The dynamic

frequency shift (pulling) depends on the mz-component of nuclear magnetization and has quite

a big value. This pulling also depends on the electronic and nuclear eigenfrequencies. If these

eigenfrequencies represent a discret set, the dependence of pulling on the magnetic field H0 and

on mz-component of nuclear magnetization becomes more complicated. The investigation of

this specific pulling is outside of the frames of current paper, but we can predict one result

qualitatively. The theoretical NMR dissipation lines in [4] were smooth, while the experimental

signal contained additional inhomogeneousnesses, which can be considered as oscillations upon

the main line. These oscillations may be described as the effects of discreteness due to the

finiteness of the sample and boundary effects.
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7. Yalçin O., Ferromagnetic Resonance – Theory and Applications (InTech, 2013).

8. Layadi A., AIP Advances 5, 057113 (2015).

9. Walker L., Phys. Rev. 105, 390 (1957).

10. Beeman D., Fink H., Shaltel D., Phys. Rev. 147, 454 (1966).

11. Blocker T., Phys. Rev. 154, 446 (1967).

12. King A., Jaccarino V., Rezende S., Phys. Rev. Lett. 37, 533 (1976).

13. Gurevich A., Magnetic Resonance in Ferrites and Antiferromagnets (Nauka, Moscow, 1973)

[in Russian].

14. Truman G. Blocker I., Phys. Rev. 154, 446 (1967).

8 Magnetic Resonance in Solids. Electronic Journal. 2018, Vol. 20, No 1, 18104 (8 pp.)




