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The expressions for calculating the matrix elements of the Coulomb interaction between an electron and
a low-symmetry infinite crystal lattice have been obtained. One-center matrix elements are considered.
The Gaussian type of orbitals (GTO) is used in calculations. All expressions are absolutely and rapidly
converging series in the space of reciprocal lattice vectors.

PACS: 61.50.Ah, 61.72.S
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1. Introduction.

Currently, the value of the long-range Coulomb interaction (LRCI), i.e. Coulomb interaction between
an electron and an infinite crystal lattice in the case of low symmetry is estimated using the Madelung
constant, in other words, by calculating the electrostatic potential at the lattice site, i.e., a point [1-4].
The expressions for calculating the LRCI matrix elements in the case of orthorhombic lattices are given
in [5]. Using the results [5], the expressions were obtained in [6] for calculating the LRCI matrix
elements on p and d-orbitals and the crystal NaV,Os was considered. For this crystal, in particular, the
Madelung energies and diagonal matrix elements on p and d orbitals were calculated. If for vanadium
ions the values of these quantities coincide well enough, they differ markedly for oxygen ions. For
example, the following estimates were obtained for one of the oxygen ions: E, =-1.18856 a.u.,

E(p,)=-0.96122a.u. The difference between these quantities is on the order of 6 eV. The energy of
P,» p, orbitals is E(p,)=-1.02686 a.u., E(p,)=-1.18351a.u, respectively. Thus, the splitting of the
diagonal matrix elements is on the order of 2-6 eV.

The LRCI matrix elements enter, for example, the expressions for the ab initio calculations of the
amplitudes of electron transfer between ions [7]. It can be seen that the LRCI estimates for the transition
amplitudes in a given crystal by the methods [1-4] can lead to the incorrect interpretation of the
experimental data. In [8], the expressions were obtained for calculating the LRCI matrix elements on
f-orbitals. The expressions obtained were used in estimating the crystal field parameters for the impurity
centers considered in [8]. The improvement in agreement with experiment was obtained in comparison
with standard methods. In this paper we obtain expressions for the calculation of such matrix elements
in the case of low symmetry.

2. General part
Let the radial part R,,(r) of the ionic orbital ,,, (r) on which the electron is located, have the
Gaussian type of orbitals (GTO) form

Rn,(r)=2al.r’e'”" " (1

Let the vectors a;,a,,a, are the vectors of the cell of the triclinic lattice. We denote by
R, =/a, +/a, +1,a, the vector determining the position of the unit cell, a r; and r, are vectors of ions

in the unit cell. We consider the isolated ion determined by the vectors R, +r;, R, =0. The charge g,

is in the site R, +r,. Then the matrix element of the Coulomb interaction of an electron with a charge
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g, defined on the wave functions of the isolated ion has the form (in a.u.) 5, 8]

j‘/’f ( 9, l)wé,(r—r/)dV:IW;(r)(—qp

Let us denote R =R, +r, —r,. We define the functions F, (nn,n,) as

(R,+rp)

r—(R1+rp—r_/)‘7l)l//;'(r)dV @)

27zF nlnzn3 qPZa b Ix”‘y zZ™|r - R|71 exp[—(a,. + ,Bk)erdxdydz. 3)

The matrix elements (2) on the orbitals of the isolated ion can be expressed in terms of the F,  (mn,n, ) func-

tions. For example, the matrix element for the v, _(r)=(3/ 47[)1/2 Z az exp(—o:ir2 ) orbital has the form

[vy. (1) (g, IR Jw,.(r)av = %F(Ooz).
We write the unit vectors of the triclinic lattice with respect to the Cartesian coordinate system in the form
a,=ae, a,=be,, a,=ce,, 4)
e, =i, e,=cosai+sinaj, e,=sinfcos@i+sinfsing j+cosdKk. (5)
Then for the R, r,, I; vectors we obtain the expressions

R, =la +la,+a, =

. . S . 6
=(La+Lbcosa+Lesin@cosp)i+(Lbsina +Lesinfsing)j+Lecos Ok, ©
r,=x,a+y,a,+z,a= -
= (xpa +y,becosa +chsin6?cosqo)i + (ypbsina +zpcsin¢9sin(o)j +z,ccos0k,
r=xa-+ya+za,=
J J i2 3
8)

= (x/.a +ybcosa + z/.csin@cosgo)i +(y_].bsina+z/.csinc9sin(p)j +z,ccosOk.

The components of the [r—(R [+, T )} vector in the Cartesian coordinate system according to

(6)-(8) are written as

—[(l1 +x, —xj)cH—(l2 +y, —yj.)bcosa+(l3 tz, —zj)csiné'cosgo] =x—4, 9)
~[(L+y,-y,)bsina+(L+z,-z,)esinOsing | = y— 4, (10)
—(l3+zp—zj)ccosezz—A3. (11)

Further we present the function F (n,n,n,) in the form convenient for calculations. To do this, we

use the transformation

|r_R|=%Tdvexp[—(r—R)2v2}. (12)

After the transformation (12) and integration with respect to X, y, z in (3), we obtain

3 [n,/2] (A,vz )".\-*2"1.\-
F b | s
nn2n3 qua I 1k+V )3/2 L ng mz_() 4 m '(n —om ) (alk—i-v )n;mS

(13)
3 a,v
xexp| —| Y A |—E— |,
p{ (; w]aik""’z}

where a, =a, + f3,, [n, /2] is the integer part of the number in brackets n, /2.
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Using the transformation

e =& (14)

we obtain

2] (1— R 3
F’ (mnyny) quab IduH n, 'Z/: ( ) (Au) ] exp[—aikuz(ZAiﬂ. (15)

ik %y o sl ) ms.(ns—2ms' wel

Letus k, =n, —2m_. After multiplying the three braces in (15), we select the products
A A AP exp| —al (4 + 4+ 47) (16)
which are present in each term of the resulting sum. We introduce the 7 = (x, y,z) vector setting
(xp —xj)a =X, (yp —yj)b =y, (zp —zj)c =z. Then 4, are written as
A4 =(la+x)+(Lb+y)cosa+(lc+z)sinOcosy, (17)
A, =(Lb+y)sina+(Le+z)sin@sing, Ay =(lc+z)cosé. (18)

Since the positions of the ions in the unit cell are arbitrary, we assume that the 7 = (x, y,z) vector is
defined at all points of the unit cell. We introduce the function D(F, k,,k,,k,) defined in the unit cell
D(F, kil k) = Y Af AR AP exp| —au’ (47 + 4+ 47) | (19)
hslyly
The function D(f,kl,kz,k3) is a periodic function of ', in the space with elementary translations
a, b, ¢ of the orthorhombic system. The same as in [5], integration over the unit cell can be transformed

into integration over the whole space when finding the Fourier transform of the function D(F, k,,k,,k; ).

Then we have

(F, ky,ky k) ZD (9. ky.ky. ey )exp[i(gF) ], (20)
D(9, k. ky, k) =‘7ijf1x§2x§3 exp{—aik [xlz +x; erf]u2 —i(gxx+gyy+ gzz)}dxdydz, 21
cV
X, =x+ycosa+zsinfcosp, x,=ysina+zsindsing, x;=zcosd, (22)
27n 27n 27n
&: = =, g, = -, 8. = =, (23)
a b c

where v, = abc is the volume of the unit cell of the orthorhombic system, g is the reciprocal lattice
vector, n_,n ,n_ are integer numbers, i is the imaginary unit. We introduce new integration variables

xoyo

X, X,, X;. Then (21) will be written as

(g, k., k,,k, ) jxl XX exp{—a [xf +x; +x32]u2 —i(g]x1 +8,x, + 8., )} dx,dx,dx;, (24)
vc 14
where v, =abcsinacos@ is the volume of the unit cell of the triclinic symmetry crystal under
consideration, and
—cosag, +g, _ sinfsin(p-a)g, —sinfsinpg +sinag,

8 =8, &=—"T——"" &= : - (25)
sina sina cost
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Performing the integration in (24), we obtain

2 g2 3 ks ! [k, /2] _igs k=2
D(g,kl,kz,/g)zmexp(— 4a,ku2JH{_ Z (-ig,) )k;h: . (26)

', o |20 55 h (K, ~20,)  (a?

We introduce the function F' (nln2n3| f‘), using the expressions (15), (20), (26).

Pl 1) - L5y H{ '”f< w)"

Ve ik O o” 5= ) m,!

ntm 27)
2]

2 ny—2my—2h, 2\ ~2
X Z Z, u exp| — £ —+igr |,
= h\(n,—2m -2h)!\ 4a, 4o, u

We substitute x = (x X )a, y= ( Y, = yj.)b, z= (z b, zj)c into the expression obtained (27) and

where Z =-ig /2a,.

perform the summation over the 7, = (xpa, y,bs zpc) vectors of the unit cell. These transformations are

cumbersome, but fairly simple and analogous to the transformations in [5, 6] for the orthorhombic
lattice. As a result, we obtain

nnn ZF(nnn‘ )

'}’l 'n 'Z 5/2

ik zk 0

XZf(”l»gl)f(nzﬂgz)f(n3’g3)eXp(_4

(28)

~2

2 2}[§qpexp[fg<n—r,ﬂ}

o, u

where g(r rj)zgx(xp —xj)a+gy(yp —yj)b+gz(zp —zj)c,

ng,—2m
2] (1=42)" {Sz } 7 n-am =2, 2\ [w2] -2 1Y
a8 S S (jz S )(4aj‘ )
k i

=0 (40% )”’\ m,! =0 hs!(ns —2m,—2h))!\ 4a, = 1(n—2t)!
~ N <y o1 1 |
For example f(O,gS)—l, f(l,gs)—ZS, f(2,gs)—2!ZS 4a f(3,gs)—3'ZY b, zZ,
f(4,gs)=iZ4+LZZ+ !

4" 8a, ' 32a)
It can be seen that the functions f (ns, gs) do not depend on the integration variable u. We call the

sum over p in parentheses in (28) as the structure factor G, (9) and present it in the form

G,(9)=G"(9)+iG(9)= X4, eXp[ig(?p - )] . G'(g)= cos(gF, ) (g)+sin(gl~’j)F2 (9). 30)

Gﬁ.z)(g)=cos(gff)]72(g)—sin(gl~’j)1ﬂ(g), qu cos(gr ) qu sm(gr ) (31

Substituting (30), (31) into (28), and integrating over u, we obtain the final expression for the
function F, (nlnzns)

2 \G
Fj(n1n2n3)= n'ny'n,! Z 3/2Zf nl,g1 (nz,gz)f(n3,g3)exp(_4g_J&_ (32)

Ve ik Qi Ay, g

4 Magnetic Resonance in Solids. Electronic Journal. 2018, Vol. 20, No 1, 18105 (8 pp.)
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It can be seen that the structural factor G/.(g) is the invariant of deformations, under which the
difference of the relative coordinates is constant.

We denote the LRCI Hamiltonian as H,,. Then the matrix element H,, on orbitals

7 (r - rj.), Ve (r - rj) is written as

Jo o= v (= Jav =i (e-0 ) -
P

r—(R,+rp)

1](//5, (r=r,)av. (33)

The stroke denotes that in the case £ =¢' the term corresponding to the interaction of the charge ¢,

with the electron on the orbital y, (r - rj) is absent in the sum.

As an example, we give the expression for the diagonal matrix element of the Hamiltonian H,, in

the case of the v, (r)= (3/47[)1/2 Dax exp(—a,.rz) orbital [6]:

172
3z a,a,

IW;X(r_rj)HLR WPX(r_rj)dV:T 52

ik aik
~2 G ~2 1/2
IS (- /ICI PO (o8 +lqj(%j |
v, T\ 2a, g 4o, ) 3 V4

The diagonal matrix elements on the , (r), v, (r) orbitals can be obtained from (34) by replacing

(34)

g, by g,, g, respectively.

3. Double-oblique crystal

As the first step, we perform test calculations on s-orbitals. According to [5], the energy of the s-orbital
E,(s) determined by (32) can be written as

Pt aa Ar G.(g) gz a, 12
Ej(s):Tz 3/12{{__2 fgz €Xp _4ak +2qj(_kj . (35)

ik Xy Ve g ; T

)

j

E;l)(s)=—4—”ZG‘f(29)eXp(—g~ZJ+2qj(2—gj' (36)

v. 5 8 8z T

We denote the expression in square brackets in formula (35) as £ (s) and put «,, =2e¢.

The expression (36) is the energy of the one-exponential s-orbital with exponent &,
1/4

Wi = (1/47[)1/2aexp( —er? ), a= 2(853 /7[) .

We assume the angle § =0 and « is an arbitrary angle. We determine the ion charge and the basis
vectors of the unit cell of the crystal in relative units as ¢, =1, 1, (0, 0, 0), q,=-Lr, (a /12,b/2,¢c/ 2).
The energy E‘f.l) (s) for such lattice is written as

. AR 5 172
El(l) (S) __ sSina Zl ( 1) eXp|:— T d] :|+ 2q] (2_6‘} , (37)

abern d, 2¢esin’ a

2 2 2

n: n., 2nn, n: .

where d, =—%+—=2 - —Ycosa +—=sin’ a.
a b ab c
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For a =b and o =120" we obtain the expression

3 1_(_1)rz\+ny+nz 27[2d 2[;‘ 172

EY =—f - 2 ly2g. | 22, 38

! (S) 27[(); d, xp 3ed? % Vs (38)
3a’n’

2 2
where d, =n_ +n; +nn, +

4c*

Let a=5b=c="7.838587 be constant lattices. Then according to (38) we obtain

e=2: EV(s) =0.291432860377413,

e=8: E(s)=0.291432860377413.

It can be seen that the energy Eﬁl) (s) for the exponent & > 2 is the same (with the given accuracy).

The explanation of this fact is obvious. According to Gauss's theorem, if the spherically symmetric
charge distribution does not overlap with a point charge, then this charge distribution can be regarded
as a point charge.

Let a =b=c=7.838587 be lattice constants, and & =120", ¢ =60° and € = 60" the angles of the

unit cell. The expressions (25) for the § vector are

- ~ 1 -
g&=g & =$(gx+2gy), g; =—ﬁgx—\@gy +2g.. (39)
Substituting these lattice constants and the expressions (39) into (36), we obtain
4\/5 1_(_1)n‘.+nv+n_, ﬂ_zd D¢ 1/2
EV (s)=- ex Sie2g | 22, 40
() a;rg(; d, Pl 6ae N7 (40)

where d; = 13(nf +n;)+22nxny +12nz(nz —\/gnx -3 ny).

e=4: EV(s) =0.68670778474898,

J
£=20: EV(s) = 0.68670778474898.
It is seen that the energy Ef.l) (s) is the same (with the given accuracy) for the values ¢ > 4.

4. BaTiOs crystal

We consider the application of the obtained expression (36) to the hexagonal BaTiOs structure.
According to [9], the lattice constants are a =b =5.7238 A, ¢ =13.9649 A. The basis vectors of the unit
cell ions in relative units have the form

Ba:: (0, 0, 0.25), Bay: (1/3, 2/3, 0.09671), Bas: (1/3, 2/3, 0.40329),
Bau: (2/3, 1/3, 0.59671), Bas: (0, 0, 0.75), Bas: (2/3, 1/3, 0.90329),
Tis: (0, 0, 0), Tix: (2/3, 1/3, 0.15367), Tis: (2/3, 1/3, 0.34633),
Tis: (0, 0, 0.5), Tis: (1/3, 2/3, 0.65367), Tie: (1/3, 2/3, 0.84633),

01: (0.3302, 0.1651, 0.0802),  O,: (0.8349, 0.1651, 0.0802), Os: (0.8349, 0.6698, 0.0802),
O4: (0.51849, 0.03699, 0.25),  Os: (0.96301, 0.48151, 0.25), Os: (0.51849, 0.48151, 0.25),
07:(0.3302, 0.1651,0.4198),  Og: (0.84903, 0.1651, 0.4198),  O: (0.8349, 0.6698, 0.4198),
O10: (0.1651, 0.3302, 0.5802),  Oyy: (0.6698, 0.83490, 0.58020), Oya: (0.1651, 0.8349, 0.5802),
O13: (0.03699, 0.51849, 0.75),  Ous: (0.48151, 0.51849, 0.75),  Oys: (0.48151, 0.96301, 0.75),
Oie: (0.1651,0.3302, 0.9198),  Oy7: (0.6698, 0.8349, 0.9198),  Oys: (0.1651, 0.8349, 0.91980).

6 Magnetic Resonance in Solids. Electronic Journal. 2018, Vol. 20, No 1, 18105 (8 pp.)
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For BaTiOs F, (g)=0, and F(g) has the form
Fi(g)=4{ 1+ (=1)" +4(=1)""" cos| z(n, /3~n, /3~n, /2) oos[ £(0.19266n,) ]| +
+4{ (1) cos(z n,/2)+2(=1)""" cos| z(n, /3=n, /3+n,/2) |cos[ #(0.30658n. )]}
—4(-1) { cos| 7(0.03698(n, —n,)~0.5n, ) |+ 2cos| 7(0.4815(n, =n,)=0.5n,) ] (41)
xcos[ 0444527 (n, +n, ) |+ 2c0s[ 7(0.3396n.)]{ cos| 7(0.6698(n, ~n,)~0.5n. ]

+2cos[0.50477r(nx +n, )} cos[ﬂ(0.1651(nx - ny)—O.Snz )] } }

According to (36) and (38), we have for BaTiO;

EV(s)=- 3 zcos(grf)ﬂ(g)exp{— 23”22“]2 }+2qj (Z_EJ (42)
aé&

2re i d, V4

The ions in BaTiO; have two non-equivalent positions. We present further the values of energies
E_Sl) (s) (in a.u.) for ions in BaTiOs (£2>4):

Ti*'(1):  cos(gr, )=1, E\(5)=1.4582510001,  (43)

Ti*"(Q2): cos(grj)=cos{27z[2;l”+%+0.15367nzﬂ, E\(5)=1.6877963539,  (44)

Ba¥(1): cos(gr,;)=cos[ 27(0.25n,)], E\(5)=0.7947950353,  (45)
2

Ba>(2): cos(gl’j)zcos{%z "3*+ :y . ﬂ E\(5)=0.6515284065,  (46)

0¥ (1): cos(grj)zcos[Zﬂ(0.5149nx+0.03699ny+0.25nz)], EV(5)=-0.9016606636,  (47)

0% (2): cos(grj):cos[z;z(o.3302nx+0.1651ny+o.0802n2)], EV(5)=—0.6683044552.  (48)

It can be seen that the energy E_f.l) (s) has Table 1. The values of the energies of electron in
the lattice site, i.e., in a point is obtained

in the work [3] and the energies E ( ) of

the same value for £>4. The values are
given with the accuracy indicating the

absolute convergence of the series with the present work (in a.u.).

respect to the reciprocal latti)ce vectors. The work [3] The present work
Table 1 shows the energies E ( ) of the Ba(1) 081144 07947950353
present work and the energies obtained in [3]. Ba(2) 0.70417 0.6515284065
A small difference in the values of the Ti(1) 1.57409 1.4582510001
energies Eﬁ.l) (S) is due to the fact that the Ti(2) 1.68474 16877963539
latti 3 Ken £ 10 o(1) —0.88351 —0.9016606636
attice constants in [3] were taken from [10], 0(2) —0.86721 —0.6683044552

in which ¢ =5.735 A, ¢ =14.05A.

In this paper, we also «calculated the diagonal matrix elements (34) on the
y/px(r);/%z%xexp(—air , l//py 1/ Zayexp —a,r’ , sz J Zazexp ar)

Magnetic Resonance in Solids. Electronic Journal. 2018, Vol. 20, No 1, 18105 (8 pp.) 7
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orbitals of oxygen O* (1). The Hartree-Fock function of p-orbitals were taken from [11]. The following
values were obtained.

[ (r=r)H,w,.(r—r)dV =-0.77608 a.u., (49)
[w,, (r=r)H,w,,(r—r)av=-1.10451au., (50)
[v,.(r=r ), w,.(r-r,)ar =—0857581 . 51)

The values (49)-(51) have the splitting on the order of 2-8 eV and differ markedly from the value
E;l) (s) in (47) obtained for a sufficiently localized s-orbital.

5. Summary

It is shown that there is the possibility of calculating LRCI matrix elements on orbitals of the arbitrary
symmetry in the case of the low symmetry of the crystal. It can be seen from the expressions (32), (34)

and (35) that the structure of the functions F; (n1n2n3) of this paper is the same as the structure of the
functions (20) for the orthorhombic system [5]. The difference lies in the redefinition of the structural
factor and the reciprocal lattice vectors. Thus, all expressions for the matrix elements on s, p, d, and
f-orbitals obtained in [5, 6, 8] for orthorhombic systems can be used for low-symmetric systems with
allowance for the above redefinition.

This approach can also be used to derive two-centered LRCI matrix elements [5].
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