Preview

Magnetic Resonance in Solids

Advanced search

Simulation of four-, five-, and six-pulse Double Quantum Coherence signals for nitroxide biradicals: Distance measurement in biological systems

https://doi.org/10.26907/mrsej-21101

Abstract

Algorithms are developed to calculate pulsed EPR (Electron Paramagnetic Resonance) signals, utilized for distance measurements in biological systems, using nitroxide biradicals, for the cases of: (i) four- (ii) five- and (iii) six-pulse double quantum coherence (DQC). The details of how to calculate the signals analytically and numerically are provided. It is shown that only onedimensional experiments are needed to determine the dipolar constant, from which the distance between the two nitroxides of the biradical can be extracted directly. The analytical expressions reveal that for the case of non-selective pulses the Fourier transforms of these three DQC pulse sequences exhibit two predominant peaks at ±d × 3 cos2 θ − 1 ; where d = 2 3D, with D being the dipolar-coupling constant and θ being the orientation of the dipolar axis with respect to the external magnetic field. It is shown here that the DQC signal is broadened by relaxation only for the four-pulse sequence, but not for the five- and six-pulse sequences. The rigorous numerical algorithm developed here is shown to produce very good agreement of the simulated signals with the published experimental signals for four-, five-, and six- pulse DQC sequences. It is discussed that the two-dimensional Fourier transform of the six-pulse signal, calculated in terms of the dipolar and echo times, gives information about the dipolar constant when analyzed along the dipolar axis, whereas its variation along the echo-axis provides information on the frequency-swept ESR spectrum of the two nitroxides

About the Authors

S. K. Misra
Concordia University
Canada

Physics Department, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8



H. R. Salahi
Concordia University
Canada

Physics Department, 1455 de Maisonneuve Boulevard West, Montreal, Quebec H3G 1M8



References

1. Saxena S., Freed J. H., J. Chem. Phys. 107, 1317 (1997).

2. Misra S. K., Borbat P., Freed J. H., Appl. Magn. Reson. 36, 237 (2009).

3. Borbat P. P., Freed J. H., Chem. Phys. Lett. 313, 145 (1999).

4. Borbat P. P., Freed J. H., EPR newsletter 17, 21 (2007).

5. Raitsimring A. M., Salikhov K. M., Bull Magn Reson 7, 184 (1985).

6. Milov A. D., Salikhov K. M., Shirov M. D., Sov. Phys. Solid State 23, 565 (1981).

7. Salikhov K. M., Dzuba S. A., Raitsimring A. M., J. Magn. Reson. 42, 255 (1969).

8. Milov A. D., Salikhov K. M., Tsvetkov Y. D., Phys. Solid State 15, 802 (1973).

9. Milov A. D., Tsvetkov Y. D., Formaggio F., Crisma M., Toniolo C., Raap J., J. Am. Chem. Soc 122, 3843 (2000).

10. Milov A. D., Tsvetkov Y. D., Formaggio F., Crisma M., Toniolo C., Raap J., J. Am. Chem. Soc 123, 3784 (2001).

11. Milov A. D., Tsvetkov Y. D., Formaggio F., Oancea S., Toniolo C., Raap J., J. Phys. Chem. B 107, 13719 (2003).

12. Milov A. D., Naumov B. D., Tsvetkov Y. D., Appl. Magn. Reson. 26, 587 (2004).

13. Milov A. D., Tsvetkov Y. D., Appl. Magn. Reson 12, 495 (1997).

14. Stein N., Mainali L., Hyde J. S., Subczynski W. K., Appl. Magn. Reson 50, 903 (2019).

15. Pfenninger S., Antholine W. E., Barr M. E., Hyde J. S., Kroneck P. M., Zumft W. G., Biophys. J. 69, 2761 (1995).

16. Lee S., Patyal B. R., Freed J. H., J. Chem. Phys. 98, 3665 (1993).

17. Misra S. K., Salahi H. R., App. Magn. Reson. 52, 247 (2021).

18. Misra S. K., Salahi H. R., Magn. Reson. Solids 22, 20101 (2020).

19. Slichter C. P., Principles of Magnetic Resonance (Springer Verlag, New York, 1989).

20. Jeschke G., Koch A., Jonas U., Godt A., J. Magn. Reson. 155, 72 (2002).

21. Halbmair K., Wegner J., Diederichsen U., Bennati M., Biophys. J. 11, 2345 (2016).

22. Berliner L. J., Ed, Spin Labeling: Theory and Application (Academic Press, New York, 1976


Review

For citations:


Misra S.K., Salahi H.R. Simulation of four-, five-, and six-pulse Double Quantum Coherence signals for nitroxide biradicals: Distance measurement in biological systems. Magnetic Resonance in Solids. 2021;23(1):21101(29 pp.). https://doi.org/10.26907/mrsej-21101

Views: 62


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)