Preview

Magnetic Resonance in Solids

Advanced search

Short-time diffusion behavior of Brownian particles in porous solids

Abstract

The process of self-diffusion of particles confined to porous solids is studied for time intervals corresponding to particle displacements shorter than the characteristic pore size. The solid matrix is modeled as a (random) potential field with an infinitely large potential within the solid which decays to zero at distances of the order of a few particle sizes from the pore walls. Diffusion of particles in the thus created potential field is described by the Smoluchowski diffusion equation. It is shown that, for short diffusion times, the resulting equation for the time-depended diffusivity reproduces that earlier obtained in the literature [Mitra et al., Phys. Rev. Lett. 68, 3555 (1992)], but with the numerical constant differing by factor 2. The conditions under which this discrepancy arises are highlighted and discussed.

About the Authors

N. F. Fatkullin
Kazan Federal University
Russian Federation

Kremlevskaya, 18, Kazan 420008



R. Valiullin
University of Leipzig
Germany

Linnestraße 5, D-04103 Leipzig



References

1. Einstein A., Ann. Phys.-Berlin 17, 549 (1905).

2. Cussler E. L., Diffusion: Mass Transfer in Fluid Systems, 3rd ed. (Cambridge University Press, Cambridge, 2009).

3. Kimmich R., NMR: tomography, diffusometry, relaxometry (Springer-Verlag, Berlin Heidelberg, 1997).

4. Price W. S., NMR Studies of Translational Motion (University Press, Cambridge, 2009).

5. Callaghan P. T., Translational Dynamics and Magnetic Resonance (Oxford University Press, New York, 2011).

6. Grebenkov D. S., Rev. Mod. Phys. 79, 1077 (2007).

7. Mitra P. P., Sen P. N., Schwartz L. M., Ledoussal P., Phys. Rev. Lett. 68, 3555 (1992).

8. Mitra P. P., Sen P. N., Schwartz L. M., Phys. Rev. B 47, 8565 (1993).

9. Latour L. L., Mitra P. P., Kleinberg R. L., Sotak C. H., J. Magn. Reson. A 101, 342 (1993).

10. Novikov D. S., Fieremans E., Jensen J. H., Helpern J. A., Nat. Phys. 7, 508 (2011).

11. Hurlimann M. D., Helmer K. G., Latour L. L., Sotak C. H., J. Magn. Reson. A 111, 169 (1994).

12. Sorland G. H., J. Magn. Reson. 126, 146 (1997).

13. Gjerdaker L., Sorland G. H., Aksnes D. W., Microporous Mesoporous Mat. 32, 305 (1999).

14. Johns M. L., Gladden L. F., J. Colloid Interface Sci. 238, 96 (2001).

15. Butler J. P., Mair R. W., Hoffmann D., Hrovat M. I., Rogers R. A., Topulos G. P., Walsworth R. L., Patz S., J. Phys.-Condes. Matter 14, L297 (2002).

16. Szutkowski K., Klinowski J., Jurga S., Solid State Nucl. Magn. Reson. 22, 394 (2002).

17. Miller G. W., Carl M., Mata J. F., Cates G. D., Mugler J. P., IEEE Trans. Med. Imaging 26, 1456 (2007).

18. Bogdan M., Parnau A., Badea C., Ardelean I., Appl. Magn. Reson. 34, 63 (2008).

19. Tyurin V. A., Maklakov A. I., Colloid J. 64, 190 (2002).

20. Muncaci S., Ardelean I., Appl. Magn. Reson. 44, 837 (2013).

21. Doi M., Edwards S., The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).

22. Chang D. B., Cooper R. L., Young A. C., Martin C. J., Ancker-Johnson B., J. Theor. Biol. 50, 285 (1975).

23. Fatkullin N. F., J. Exp. Theor. Phys. 98, 2030 (1990).

24. Valiullin R., Skirda V., J. Chem. Phys. 114, 452 (2001).

25. Sen P. N., Concepts Magn. Reson. Part A 23A, 1 (2004).

26. Zielinski L. J., J. Chem. Phys. 121, 352 (2004).


Review

For citations:


Fatkullin N.F., Valiullin R. Short-time diffusion behavior of Brownian particles in porous solids. Magnetic Resonance in Solids. 2014;16(2):14202 (7 pp.).

Views: 38


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)