Preview

Magnetic Resonance in Solids

Advanced search

Exponential temperature dependence of the Yb3+ relaxation in Y0.98Yb0.02Ba2Cu3Ox

Abstract

The relaxation of Yb3+ in YBa2Cu3Ox (x = 6.1 and 6.4) was studied using Electron Paramagnetic Resonance (EPR). In these samples the Yb3+ relaxation is dominated by a phonon mechanism. It was shown that the conventional Raman two-phonon process involving acoustic phonons can not describe the temperature dependence of the Yb3+ relaxation. Instead, the Raman process involving optical phonons or an Orbach-like process via the excited vibronic levels of Cu2+ ions with energy Ω = 500(50) K is responsible for the phononic part of the Yb3+ relaxation in YBa2Cu3Ox. The present results provide clear experimental evidence that optical phonons or local vibrations are the dominant source of spin-lattice relaxation at sufficiently high temperatures, which cannot be described by the traditional approach using the Debye approximation.

About the Authors

A. Maisuradze
Laboratory for Developments and Methods, Paul Scherrer Institut
Switzerland

CH-5232 Villigen PSI



A. Shengelaya
Department of Physics, Tbilisi State University
Georgia

Chavchavadze av. 3, GE-0128 Tbilisi



E. Pomjakushina
Laboratory for Developments and Methods, Paul Scherrer Institut
Switzerland

CH-5232 Villigen PSI



K. Conder
Laboratory for Developments and Methods, Paul Scherrer Institut
Switzerland

CH-5232 Villigen PSI



H. Keller
Laboratory for Developments and Methods, Paul Scherrer Institut
Switzerland

CH-5232 Villigen PSI



K. A. Müller
Laboratory for Developments and Methods, Paul Scherrer Institut
Switzerland

CH-5232 Villigen PSI



References

1. Heitler W., Teller E. Proc. Roy. Soc. A155, 629 (1936)

2. Kronig R. de L. Physica 6, 33 (1939)

3. Van Vleck J.H. Phys. Rev. 57, 426 (1940)

4. Kochelaev B.I. JETP 10, 171 (1960)

5. Weber M.J. Phys. Rev. 130, 1 (1963)

6. Hoch M.J.R., Lourens J.A.J., Gordon M.I. Phys. Rev. B 13, 2787 (1976)

7. Huang C.-Y. Phys. Rev. 154, 215 (1967)

8. Kurkin I.N., Chernov K.P. JETP 56, 607 (1982)

9. Ivanshin V. A., Kurkin I.N., V¨olkel G. Phys. Stat. Sol. B 148, K61 (1988)

10. Abragam A., Bleaney B. Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)

11. Pilbrow J.R. Transition Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990)

12. Maisuradze A., Shengelaya A., Kochelaev B.I., Pomjakushina E., Conder K., Keller H., Müller K.A. Phys. Rev. B 79, 054519 (2009)

13. Sichelschmidt J., Elschner B., Loidl A., Kochelaev B.I. Phys. Rev. B 51, 9199 (1995)

14. Boothroyd A.T., Mukherjee A., Murani A.P. Phys. Rev. Lett. 77, 1600 (1996)

15. Dodds S.A., Sanny J., Orbach R. Phys. Rev. B 18, 1016 (1978)

16. Guillaume M., Allenspach P., Mesot J., Staub U., Furrer A., Osborn R., Taylor A.D., Stucki F., Untern¨ahrer P. Solid State Commun. 81, 999 (1992)

17. von Molnar S., Torressen A., Kaiser D., Holtzberg F., Penney T. Phys. Rev. B 37, 3762 (1988)

18. Pintschovius L., Reichardt W., Kl¨aser M., Wolf T., L¨ohneysen H. Phys. Rev. Lett. 89, 037001 (2002)

19. Opel M., Hackl R., Devereaux T.P., Virosztek A., Zawadowski A., Erb A., Walker E., Berger H., Forr´o L. Phys. Rev. B 60, 9836 (1999)

20. Kutuzov A.S., Kochelaev B.I. (unpublished)

21. Höchli U., M¨uller K.A. Phys. Rev. Lett. 12, 730 (1964)

22. Höchli U., M¨uller K.A., Wysling P. Phys. Letters 15, 1 (1965)

23. Müller K.A. in Magnetic Resonance and Relaxation, edited by R. Blinc (North-Holland Publishing Company, 1967), pp. 192–208


Review

For citations:


Maisuradze A., Shengelaya A., Pomjakushina E., Conder K., Keller H., Müller K.A. Exponential temperature dependence of the Yb3+ relaxation in Y0.98Yb0.02Ba2Cu3Ox. Magnetic Resonance in Solids. 2014;16(2):14205 (6 pp.).

Views: 31


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)