Exponential temperature dependence of the Yb3+ relaxation in Y0.98Yb0.02Ba2Cu3Ox
Abstract
The relaxation of Yb3+ in YBa2Cu3Ox (x = 6.1 and 6.4) was studied using Electron Paramagnetic Resonance (EPR). In these samples the Yb3+ relaxation is dominated by a phonon mechanism. It was shown that the conventional Raman two-phonon process involving acoustic phonons can not describe the temperature dependence of the Yb3+ relaxation. Instead, the Raman process involving optical phonons or an Orbach-like process via the excited vibronic levels of Cu2+ ions with energy Ω = 500(50) K is responsible for the phononic part of the Yb3+ relaxation in YBa2Cu3Ox. The present results provide clear experimental evidence that optical phonons or local vibrations are the dominant source of spin-lattice relaxation at sufficiently high temperatures, which cannot be described by the traditional approach using the Debye approximation.
About the Authors
A. MaisuradzeSwitzerland
CH-5232 Villigen PSI
A. Shengelaya
Georgia
Chavchavadze av. 3, GE-0128 Tbilisi
E. Pomjakushina
Switzerland
CH-5232 Villigen PSI
K. Conder
Switzerland
CH-5232 Villigen PSI
H. Keller
Switzerland
CH-5232 Villigen PSI
K. A. Müller
Switzerland
CH-5232 Villigen PSI
References
1. Heitler W., Teller E. Proc. Roy. Soc. A155, 629 (1936)
2. Kronig R. de L. Physica 6, 33 (1939)
3. Van Vleck J.H. Phys. Rev. 57, 426 (1940)
4. Kochelaev B.I. JETP 10, 171 (1960)
5. Weber M.J. Phys. Rev. 130, 1 (1963)
6. Hoch M.J.R., Lourens J.A.J., Gordon M.I. Phys. Rev. B 13, 2787 (1976)
7. Huang C.-Y. Phys. Rev. 154, 215 (1967)
8. Kurkin I.N., Chernov K.P. JETP 56, 607 (1982)
9. Ivanshin V. A., Kurkin I.N., V¨olkel G. Phys. Stat. Sol. B 148, K61 (1988)
10. Abragam A., Bleaney B. Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970)
11. Pilbrow J.R. Transition Ion Electron Paramagnetic Resonance (Clarendon Press, Oxford, 1990)
12. Maisuradze A., Shengelaya A., Kochelaev B.I., Pomjakushina E., Conder K., Keller H., Müller K.A. Phys. Rev. B 79, 054519 (2009)
13. Sichelschmidt J., Elschner B., Loidl A., Kochelaev B.I. Phys. Rev. B 51, 9199 (1995)
14. Boothroyd A.T., Mukherjee A., Murani A.P. Phys. Rev. Lett. 77, 1600 (1996)
15. Dodds S.A., Sanny J., Orbach R. Phys. Rev. B 18, 1016 (1978)
16. Guillaume M., Allenspach P., Mesot J., Staub U., Furrer A., Osborn R., Taylor A.D., Stucki F., Untern¨ahrer P. Solid State Commun. 81, 999 (1992)
17. von Molnar S., Torressen A., Kaiser D., Holtzberg F., Penney T. Phys. Rev. B 37, 3762 (1988)
18. Pintschovius L., Reichardt W., Kl¨aser M., Wolf T., L¨ohneysen H. Phys. Rev. Lett. 89, 037001 (2002)
19. Opel M., Hackl R., Devereaux T.P., Virosztek A., Zawadowski A., Erb A., Walker E., Berger H., Forr´o L. Phys. Rev. B 60, 9836 (1999)
20. Kutuzov A.S., Kochelaev B.I. (unpublished)
21. Höchli U., M¨uller K.A. Phys. Rev. Lett. 12, 730 (1964)
22. Höchli U., M¨uller K.A., Wysling P. Phys. Letters 15, 1 (1965)
23. Müller K.A. in Magnetic Resonance and Relaxation, edited by R. Blinc (North-Holland Publishing Company, 1967), pp. 192–208
Review
For citations:
Maisuradze A., Shengelaya A., Pomjakushina E., Conder K., Keller H., Müller K.A. Exponential temperature dependence of the Yb3+ relaxation in Y0.98Yb0.02Ba2Cu3Ox. Magnetic Resonance in Solids. 2014;16(2):14205 (6 pp.).