Preview

Magnetic Resonance in Solids

Advanced search

Probing the Metal-to-Insulator Transition in LaCu3RuxTi4-xO12 by Gd-ESR

Abstract

LaCu3RuxTi4-xO12 undergoes a metal-to-insulator transition (MIT) from a heavy-fermion metal (x = 4) with moderately enhanced electronic masses to an antiferromagnetic insulator (x = 0) with colossal dielectric constants. So far, the exact value xc of the MIT could not be obtained from electrical resistivity or specific-heat data, which are governed by local-moment scattering and Schottky anomalies, respectively. To investigate the MIT by electron spin resonance (ESR) technique, polycrystalline samples of the solid-solution series La1-yGdyCu3RuxTi4-xO12 were synthesized for the substitution range 1 ≤ x ≤ 4 and 0.05 ≤ y ≤ 0.15, where Gd3+ (8S7/2 ground state) serves as ESR probe. For x = 4 the Gd3+ ESR linewidth exhibits an enhanced Korringa relaxation at low temperatures (T<50 K) as typically expected for heavy-fermion metals. This metallic contribution gradually diminishes on decreasing Ru content x and vanishes for x = 2.25 localizing the MIT close to the onset of spin-glass behavior arising for x ≤ 2.

About the Authors

B. Schmidt
Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg
Germany

D-86159 Augsburg



H. -A. Krug von Nidda
Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg
Germany

D-86159 Augsburg



S. Riegg
Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg
Germany

D-86159 Augsburg



S. G. Ebbinghaus
Solid State Chemistry, Martin-Luther University Halle-Wittenberg
Germany

D-06099 Halle



A. Reller
Resource Strategy, University of Augsburg
Germany

D-86159 Augsburg



A. Loidl
Experimental Physics V, Center for Electronic Correlations and Magnetism, University of Augsburg
Germany

D-86159 Augsburg



References

1. Andres K., Graebner J. E., Ott H. R., Phys. Rev. Lett. 35, 1779 (1975).

2. Steglich F., Aarts J., Bredl C. D., Lieke W., Meschede D., Franz W., Sch¨afer H., Phys. Rev. Lett. 43, 1892 (1979).

3. Trovarelli O., Geibel C., Mederle S., Langhammer C., Grosche F. M., Gegenwart P., Lang M., Sparn G., Steglich F., Phys. Rev. Lett. 85, 626 (2000).

4. Stewart G. R., Rev. Mod. Phys. 56, 755 (1984).

5. Kondo S., Johnston D. C., Swenson C. A., Borsa F., Mahajan A. V., Miller L. L., Gu T., Goldman A. I., Maple M. B., Gajewski D. A., Freeman E. J., Dilley N. R., Merrin J., Kojima

6. K., Luke G. M., Uemura Y. J., Chmaissem O., Jorgensen J. D., Phys. Rev. Lett. 78, 3729 (1997).

7. Heinrich M., Krug von Nidda H.-A., Fritsch V., Loidl A., Phys. Rev. B 63, 193103 (2001).

8. Krug von Nidda H.-A., Bulla R., B¨uttgen N., Heinrich M., Loidl A., Eur. Phys. J. B 34, 399 (2003).

9. Sichelschmidt J., Ivanshin V. A., Ferstl J., Geibel C., Steglich F., Phys. Rev. Lett. 91, 156401 (2003).

10. Förster T., Sichelschmidt J., Krellner C., Geibel C., Steglich F., J. Phys.: Condens. Matter 22, 435603 (2010).

11. Elschner B., Loidl A., in Gschneidner K. A. Jr., Eyring L. (eds.), Handbook on the Physics and Chemistry of Rare Earths, Vol. 24, p. 221 (Elsevier Science B. V., Amsterdam, 1997).

12. Schlott M., Elschner B., Herrmann M., Assmus W., Z. Phys. B 72 385 (1988).

13. Krug von Nidda H.-A., Sch¨utz A., Heil M., Elschner B., Loidl A., Phys. Rev. B 57, 14344 (1998).

14. Mair S., Krug von Nidda H.-A., Lohmann M., Loidl A., Phys. Rev. B 60 16409 (1999).

15. Ramirez A. P., Lawes G., Li D., Subramanian M. A., Solid State Commun. 131, 251 (2004).

16. B¨uttgen N., Krug von Nidda H.-A., Kraetschmer W., G¨unther A., Widmann S., Riegg S., Krimmel A., Loidl A., J. Low Temp. Phys. 161, 148 (2010).

17. Kobayashi W., Terasaki I., Takeya J.-I., Tsukada I., Ando Y., J. Phys. Soc. Jpn. 73, 2373 (2004).

18. Krimmel A., G¨unther A., Kraetschmer W., Dekinger H., B¨uttgen N., Loidl A., Ebbinghaus S. G., Scheidt E.-W., Scherer W., Phys. Rev. B 78, 165126 (2008).

19. Krimmel A., G¨unther A., Kr¨atschmer W., Dekinger H., B¨uttgen N., Eyert V., Loidl A., Sheptyakov D. V., Scheidt E.-W., Scherer W., Phys. Rev. B 80, 121101 (2009).

20. Dittl A., Krohns S., Sebald J., Schrettle F., Hemmida M., Krug von Nidda H.-A., Riegg S., Reller A., Ebbinghaus S. G., Loidl A., Eur. Phys. J. B 79, 391 (2011).

21. Ebbinghaus S. G., Weidenkaff A., Cava R. J., J. Solid State Chem. 167, 126 (2002).

22. Ebbinghaus S. G., Riegg S., G¨otzfried T., Reller A., Eur. Phys. J. Special Topics 180, 91 (2010).

23. Rodriguez-Carvajal J., Physica B 192, 55 (1993).

24. Feher G., Kip A. F., Phys. Rev. 98, 337 (1955).

25. Dyson F. J., Phys. Rev. 98, 349 (1955).

26. Joshi J. P., Bhat S. V., J. Magn. Reson. 168, 284 (2004).

27. Coldea M., Schaeffer H., Weissenberger V., Elschner B., Z. Phys. B 68, 25 (1987).

28. Cox D. L., Bickers N. E., Wilkins J. W., J. Appl. Phys. 57, 3166 (1985).

29. Abragam A., Bleaney B., Electron Paramagnetic Resonance of Transition Ions (Clarendon, Oxford, 1970).

30. Dengler E., Deisenhofer J., Krug von Nidda H.-A., Khim S., Kim J. S., Kim K. H., Casper F., Felser C., Loidl A., Phys. Rev. B 81, 024406 (2010).

31. Tokura Y., Taguchi Y., Okada Y., Fujishima Y., Arima T., Kumagai K., Iye Y., Phys. Rev. Lett. 70, 2126 (1993).

32. Taguchi Y., Tokura Y., Arima T., Inaba F., Phys. Rev. B 48, 511 (1993).


Review

For citations:


Schmidt B., Krug von Nidda H.-., Riegg S., Ebbinghaus S.G., Reller A., Loidl A. Probing the Metal-to-Insulator Transition in LaCu3RuxTi4-xO12 by Gd-ESR. Magnetic Resonance in Solids. 2014;16(2):14210 (10 pp.).

Views: 27


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)