therosclerotic plaque and hydroxyapatite nanostructures studied by high-frequency EPR
Abstract
A series of nanosized (20 nm and larger) samples of hydroxyapatite powders synthesized by wet preparation method and doped with Mn2+ and Pb2+ ions were studied by 94 GHz pulsed electron paramagnetic resonance (EPR). The results are compared with those obtained in the samples of aorta walls from male patients with atherosclerosis as well as in bulk hydroxyapatite materials. It is shown that in contrast to bulk materials Pb ions at least partially replace the Ca(1) site in the hydroxyapatite structure. The spectral characteristics of the Mn2+ ions revealed in atherosclerotic plaque and synthetic hydroxyapatite are found to be practically identical. The hypothesis about the important role of (nano)hydroxyapatite in formation and rupture of atherosclerotic plaques is supported.
About the Authors
M. R. GafurovRussian Federation
Institute of Physics, Kazan 420008
B. V. Yavkin
Russian Federation
Institute of Physics, Kazan 420008
T. B. Biktagirov
Russian Federation
Institute of Physics, Kazan 420008
G. V. Mamin
Russian Federation
Institute of Physics, Kazan 420008
S. B. Orlinskii
Russian Federation
Institute of Physics, Kazan 420008
V. V. Izotov
Russian Federation
Institute of Physics, Kazan 420008
M. Kh. Salakhov
Russian Federation
Institute of Physics, Kazan 420008
E. S. Klimashina
Russian Federation
Moscow 119992
V. I. Putlayev
Russian Federation
Moscow 119992
V. A. Abdul'yanov
Russian Federation
Kazan 420101
I. M. Ignatjev
Russian Federation
Kazan 420101
R. N. Khairullin
Russian Federation
Kazan 420101
A. V. Zamochkin
Russian Federation
Kazan 420101
Yu. A. Chelyshev
Russian Federation
Kazan 420008; 420012 Kazan
References
1. Petrukhin I.S., Lunina E.Y . Public Health Reviews 33, 436 (2012)
2. Weissberg P.L. Heart 83, 247 (2000)
3. Global Atlas on cardiovascular disease prevention and control, World Health Organization, Geneva, 155 p. (2011)
4. Vengrenyuk Y., Carlier S., Xanthos S., Cardoso L., Ganatos P., Virmani R., Einav Sh., Gilchrist L., Weinbaum S. PNAS 103, 14678 (2006)
5. Abdul’yanov V.A., Galiullina L.F., Galyavich A.S., Izotov V.G., Mamin G.V., Orlinskii S.B., Rodionov A.A., Salakhov M.Kh., Silkin N.I., Sitdikova L.M., Khairullin R.N., Chelyshev Yu.A. JETP Lett. 88, 69 (2008)
6. LeGeros R.Z, LeGeros J.P. Ch.16: Hydroxyapatite (pp. 367-394) in “Bioceramics and their clinical applications” by T. Kokubo (Ed.). Woodhead Pub. and Maney Pub., Cambridge, 760 p. (2008)
7. Dorozhkin S.V., Epple M. Angew Chem Int Ed. 41, 3130 (2002)
8. Dorozhkin S.V. Am. J. Biomed. Eng. 2, 48 (2012)
9. Chu S.H., Feng D.F., Ma Y.B., Li Z.Q. Int J Nanomedicine 7, 3659 (2012)
10. Jarcho M., Bolen C.H., Thomas M.B., Bobick J., Kay J.F., Doremus R.H. J. Mater. Sci. 11, 2027 (1976)
11. Kehoe Sh. Optimisation of Hydroxyapatite (HAp) for Orthopaedic Application via the Chemical Precipitation Technique Ph.D. Thesis, Dublin City University, 393 p (2008)
12. Keijser T.De, Langford J.I., Mittemeijer E.J., Vogels A.B.P. J. Appl. Cryst. 15, 3087 (1982)
13. Murphy D.M., Farley R.D. Chem. Soc. Rev. 35, 249 (2006)
14. Silkin N.I., Chelyshev Yu.A., Mamin G.V., Orlinskii S. B., Salakhov M. Kh. Patent RU 2468368
15. Elliott J.C. Studies in Inorganic Chemistry 18, 1 (1994)
16. Nounah A., Maroufi N., Ichou Y., Ait Y, Lacout J.L., Savariault J.M. J. Phys. IV 123, 251 (2005)
17. Yavkin B.V., Mamin G.V., Orlinskii S.B., Gafurov M.R., Salakhov M.Kh., Biktagirov T.B., Klimashina E.S., Putlayev V.I., Tretyakov Yu.D., Silkin N.I. Phys. Chem. Chem. Phys. 14, 2246 (2012)
18. Pounds J.G., Long G.J., Rosen J.F. Environ Health Perspect. 91, 17 (1991)
Review
For citations:
Gafurov M.R., Yavkin B.V., Biktagirov T.B., Mamin G.V., Orlinskii S.B., Izotov V.V., Salakhov M.Kh., Klimashina E.S., Putlayev V.I., Abdul'yanov V.A., Ignatjev I.M., Khairullin R.N., Zamochkin A.V., Chelyshev Yu.A. therosclerotic plaque and hydroxyapatite nanostructures studied by high-frequency EPR. Magnetic Resonance in Solids. 2013;15(1):13102 (7 pp.).