Preview

Magnetic Resonance in Solids

Advanced search

Coherence of optically addressable spin centers created in hexagonal boron nitride by proton irradiation

https://doi.org/10.26907/mrsej-22101

Abstract

Spin-carrying defects possessing optically addressable ground states in semiconductors allow the development of solid-state quantum technologies. Recently such type of defect has been found in hexagonal boron nitride (hBN) and identified as a negatively charged boron vacancy (VB-). Here we investigate the possibility to create VB- centers in hBN by irradiation with high-energy protons (EP= 15 MeV), and probe the spin-coherence of the defects. Electron paramagnetic resonance methods show that such irradiation generates the VB- centers. Spin-relaxation times (T1 and T2) of VB- spin ensembles created by proton irradiation are determined to be 20 μs and 4 μs, respectively

About the Authors

M. A. Sadovnikova
Kazan Federal University
Russian Federation

Kremlevskaya 18, Kazan 420008



G. V. Mamin
Kazan Federal University
Russian Federation

Kremlevskaya 18, Kazan 420008



R. V. Yusupov
Kazan Federal University
Russian Federation

Kremlevskaya 18, Kazan 420008



P. P. Kobchikova
Kazan Federal University
Russian Federation

Kremlevskaya 18, Kazan 420008



F. F. Murzakhanov
Kazan Federal University
Russian Federation

Kremlevskaya 18, Kazan 420008



References

1. Doherty M. W., Manson N. B., Delaney P., Jelezko F., Wrachtrup J., Hollenberg L. C., Physics Reports 528, 1 (2013).

2. Baranov P. G., Il’in I., Mokhov E., Muzafarova M. V., Orlinskii S. B., Schmidt J., Journal of Experimental and Theoretical Physics Letters 82, 441 (2005).

3. Koehl W. F., Buckley B. B., Heremans F. J., Calusine G., Awschalom D. D., Nature 479, 84 (2011).

4. Biktagirov T., Schmidt W. G., Gerstmann U., Yavkin B., Orlinskii S., Baranov P., Dyakonov V., Soltamov V., Physical Review B 98, 195204 (2018).

5. Riedel D., Fuchs F., Kraus H., V¨ath S., Sperlich A., Dyakonov V., Soltamova A., Baranov P., Ilyin V., Astakhov G., Physical Review Letters 109, 226402 (2012).

6. Soltamov V. A., Soltamova A. A., Baranov P. G., Proskuryakov I. I., Physical Review Letters 108, 226402 (2012).

7. Widmann M., Lee S.-Y., Rendler T., Son N. T., Fedder H., Paik S., Yang L.-P., Zhao N., Yang S., Booker I., et al., Nature Materials 14, 164 (2015).

8. Lohrmann A., Johnson B., McCallum J., Castelletto S., Reports on Progress in Physics 80, 034502 (2017).

9. Fuchs F., Stender B., Trupke M., Simin D., Pflaum J., Dyakonov V., Astakhov G., Nature Communications 6, 1 (2015).

10. Awschalom D. D., Hanson R., Wrachtrup J., Zhou B. B., Nature Photonics 12, 516 (2018).

11. Tarasenko S., Poshakinskiy A., Simin D., Soltamov V., Mokhov E., Baranov P., Dyakonov V., Astakhov G., Physica Status Solidi (B) 255, 1700258 (2018).

12. Kraus H., Soltamov V., Fuchs F., Simin D., Sperlich A., Baranov P., Astakhov G., Dyakonov V., Scientific Reports 4, 1 (2014).

13. Exarhos A. L., Hopper D. A., Patel R. N., Doherty M. W., Bassett L. C., Nature Communications 10, 1 (2019).

14. Gottscholl A., Kianinia M., Soltamov V., Orlinskii S., Mamin G., Bradac C., Kasper C., Krambrock K., Sperlich A., Toth M., et al., Nature Materials 19, 540 (2020).

15. Mendelson N., Chugh D., Reimers J. R., Cheng T. S., Gottscholl A., Long H., Mellor C. J., Zettl A., Dyakonov V., Beton P. H., et al., Nature Materials 20, 321 (2021).

16. Tsao J., Chowdhury S., Hollis M., Jena D., Johnson N., Jones K., Kaplar R., Rajan S., Van de Walle C., Bellotti E., et al., Advanced Electronic Materials 4, 1600501 (2018).

17. Sajid A., Ford M. J., Reimers J. R., Reports on Progress in Physics 83, 044501 (2020).

18. Iv´ady V., Barcza G., Thiering G., Li S., Hamdi H., Chou J.-P., Legeza O., Gali A., ¨ npj Computational Materials 6, 1 (2020).

19. Sajid A., Thygesen K. S., Reimers J. R., Ford M. J., Communications Physics 3, 1 (2020).

20. Toledo J., De Jesus D., Kianinia M., Leal A., Fantini C., Cury L., S´afar I., Krambrock K., Physical Review B 98, 155203 (2018).

21. Kianinia M., White S., Froch J. E., Bradac C., Aharonovich I., ACS Photonics 7, 2147 (2020).

22. Gao X., Pandey S., Kianinia M., Ahn J., Ju P., Aharonovich I., Shivaram N., Li T., ACS Photonics 8, 994 (2021).

23. Stoll S., Schweiger A., Journal of Magnetic Resonance 178, 42 (2006).

24. Murzakhanov F. F., Yavkin B. V., Mamin G. V., Orlinskii S. B., Mumdzhi I. E., Gracheva I. N., Gabbasov B. F., Smirnov A. N., Davydov V. Y., Soltamov V. A., Nanomaterials 11, 1373 (2021).

25. Murzakhanov F., Yavkin B., Mamin G., Orlinskii S., von Bardeleben H., Biktagirov T., Gerstmann U., Soltamov V., Physical Review B 103, 245203 (2021).

26. Gottscholl A., Diez M., Soltamov V., Kasper C., Sperlich A., Kianinia M., Bradac C., Aharonovich I., Dyakonov V., Science Advances 7, 3630 (2021).

27. Murzakhanov F. F., Mamin G. V., Orlinskii S. B., Gerstmann U., Schmidt W. G., Biktagirov T., Aharonovich I., Gottscholl A., Sperlich A., Dyakonov V., Soltamov V., Nano

28. Letters 22, 2718 (2022).


Review

For citations:


Sadovnikova M.A., Mamin G.V., Yusupov R.V., Kobchikova P.P., Murzakhanov F.F. Coherence of optically addressable spin centers created in hexagonal boron nitride by proton irradiation. Magnetic Resonance in Solids. 2022;24(1):22101(6 pp.). https://doi.org/10.26907/mrsej-22101

Views: 70


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)