Preview

Magnetic Resonance in Solids

Advanced search

Photoinduced EPR in KTa0.988Nb0.012O3 crystals

Abstract

We report the first experimental observation of the photoinduced EPR spectra in KTa1-xNbxO3 crystals (x = 0.012). The signal has two components: nearly isotropic with geff = 2 and strongly anisotropic one. Isotropic signal originates most probably from single localized photo-carriers - electrons or holes. Anisotropic spectrum is observed below 10 K and reveals a set of characteristic properties. It originates from the axial centers with axes coinciding with the C4 axes of the crystal. Effective g-factor values are gparallel = 2.106(3) and gnormal < 0.8. Angle dependencies of the intensity and the width of the anisotropic signal as well as the resonance field can qualitatively be explained within the simple J = 1 model. The observed anisotropic photoinduced EPR spectrum is tentatively assigned to excitons or bipolarons.

About the Authors

A. I. Gubaev
Basel University
Switzerland

Klingelbergstr. 50-70, Basel 4056



A. A. Rodionov
Kazan State University
Russian Federation

Kremlevskaya, 18, Kazan 420008



M. Kh. Salakhov
Kazan State University
Russian Federation

Kremlevskaya, 18, Kazan 420008



I. N. Subacheva
Kazan State University
Russian Federation

Kremlevskaya, 18, Kazan 420008



P. P. Syrnikov
A. F. Ioffe Physical-Technical Institute
Russian Federation

St.-Petersburg 194021



V. A. Trepakov
A. F. Ioffe Physical-Technical Institute; Institute of Physics, ASCR
Russian Federation

St.-Petersburg 194021; 182 21 Prague 8, Czech Republic



R. V. Yusupov
Kazan State University
Russian Federation

Kremlevskaya, 18, Kazan 420008



References

1. Samara G.A., Morosin B., Phys. Rev. B 8, 1256 (1973); Vaks V.G., Introduction to Microscopic Theory of Ferroelectrics, Nauka, Moscow, p. 327 (1973) (in Russian).

2. Burke W.J., Pressley R.J., Sol. State Comm. 9, 191 (1971).

3. Hoechli U.T., Knorr K., Loidl A., Advances in Physics 39, 405 (1990).

4. Trepakov V.A., Prosandeev S.A., Savinov M.E., Galinetto P., Samoggia E., Kapphan S.E., Jastrabrik L., Boatner L.A. J. Phys. Chem. Solids 65, 1317 (2004).

5. Khmel’nitskii D.E., Shneerson V.L., Sov. Phys. Solid State 13, 687 (1971); Rechester A.B., Sov. Phys. JETP 33, 423 (1971); Morf R., Scneider T., Stoll E., Phys. Rev. B 16, 462 (1977).

6. Takesada M., Yagi T., Itoh M., Koshihara S., J. Phys. Soc. Jpn. 72, 37 (2003); Katayama I., Ichikawa Y., Tanaka K., Phys. Rev. B 67, 100102 (2003); Uchida K., Tsuneyki S., Schimitsu TS., Phys. Rev. B 68, 174107 (2003); Ishikawa I., Itoh M., Kurita M., Shimoda H., Takesada M., Yagi T., Koshihara S., Ferroelectrics 298, 141 (2004); Takesada M., Yagi T., Itoh M., Ishikawa T., Koshihara S., Ferroelectrics 298, 317 (2004).

7. Schirmer O.F, Linde D. Appl. Phys. Lett. 33, 35 (1978).

8. Schirmer O.F., Kool Th.W., Lenjer S., Mainwald M. Phys. Status Solidi C 2, 124 (2005).

9. Gubaev A.I., Kapphan S.E., Jastrabik L., Trepakov V.A., Syrnikov P.P. J. Appl. Phys. 100, 023106 (2006).

10. Laguta V.V., Zaritskii M.I., Glinchuk M.D., Bykov I. P. Phys. Rev. B 58, 156 (1998).

11. Mainwald M., Schirmer O.F. Europhys. Lett. 64 (6), 776 (2003).

12. Abragam A., Bleany B. Electron Paramagnetic Resonance of Transition Ions (Moscow, 1972).

13. Donckers M.C.J.M., Poluektov O.G., Schmidt J., Baranov P.G. Phys. Rev.B 45, 13061(1992).

14. Sweeney K.L., Halliburton L.E., Kappers L.A. Phys. Lett. A 116, 81 (1986).


Review

For citations:


Gubaev A.I., Rodionov A.A., Salakhov M.Kh., Subacheva I.N., Syrnikov P.P., Trepakov V.A., Yusupov R.V. Photoinduced EPR in KTa0.988Nb0.012O3 crystals. Magnetic Resonance in Solids. 2010;12(1):7-11.

Views: 18


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)