Magnetic resonance studies of Ar-ion irradiated rutile
https://doi.org/10.26907/mrsej-23102
Abstract
The point defects have been produced in the rutile structure by irradiation of a single crystalline (001)-TiO2 rutile platet wih 40 keV Ar+ ions. It is found that Ar-ion bombardment of rutile results in a large number of positively charged oxygen vacancies and, as a consequence, leads to a change in the valence of neighbouring Ti cations. Electron paramagnetic resonance (EPR) of Ar-ion irradiated TiO2 rutile is studied in detail. The analysis of angular and temperature dependences of EPR spectra makes it possible to conclude that EPR signals are associated with Ti3+ ions in the sixfold symmetric environment. In addition to the main signal from even titanium isotopes, eight equidistant weak lines are observed due to the hyperfine interaction typical for two titanium isotopes: 47Ti with a nuclear spin I=5/2 (natural abundance of 7.4%) and 49Ti with a nuclear spin I=7/2 (natural abundance of 5.4%). By comparing the g-tensor components with the reference data it is concluded that these Ti3+-based centers in Ar-ion implanted rutile were not described before.
Keywords
About the Authors
A. A. SukhanovRussian Federation
Kazan
V. F. Valeev
Russian Federation
Kazan
V. I. Nuzhdin
Russian Federation
Kazan
R. I. Khaibullin
Russian Federation
Kazan
References
1. Diebold U. Surface Science Reports 48, 53 (2003)
2. Fujishima A., Honda K. Nature 238, 37 (1972)
3. Strukov D. B., Snider G. S., Stewart D. R., Williams R. S. Nature 453, 80 (2008)
4. Dong R., Yan X., Zhang Z., Wang M. Materials Research Bulletin 61, 101 (2015)
5. Breckenridge R. G., Hosler W. R. Physical Review 91, 793 (1953)
6. Diebold U., Li M., Dulub O., Hebenstreit E. L. D., Hebenstreit W. Surface Review and Letters 07, 613 (2000)
7. Aono M., Hasiguti R. R. Physical Review B 48, 12406 (1993)
8. Yang S., Halliburton L. E., Manivannan A., Bunton P. H., Baker D. B., Klemm M., Horn S., Fujishima A. Applied Physics Letters 94, 162114 (2009)
9. Brand˜ao F. D., Pinheiro M. V. B., Ribeiro G. M., Medeiros-Ribeiro G., Krambrock K. Physical Review B 80, 235204 (2009)
10. Brant A. T., Giles N. C., Sarker M. A. R., Watauchi S., Nagao M., Tanaka I., Tryk D. A., Manivannan A., Halliburton L. E. Journal of Applied Physics 114, 113702 (2013)
11. Zhou S., Ciˇzm´ar E., Potzger K., Krause M., Talut G., Helm M., Fassbender J., Zvyagin S. A., ˇ Wosnitza J., Schmidt H. Physical Review B 79, 113201 (2009)
12. Ziegler J. F., Ziegler M., Biersack J. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 1818 (2010)
13. Stoll S., Schweiger A. Journal of Magnetic Resonance 178, 42 (2006)
14. Al’tshuler S. A., Kozyrev B. M. Electron Paramagnetic Resonance in Compounds of Transition Elements (Wiley, New York, 1974)
15. Yoshimori A. Journal of the Physical Society of Japan 14, 807 (1959)
16. Yang K., Dai Y., Huang B., Feng Y. P. Physical Review B 81, 033202 (2010)
Review
For citations:
Sukhanov A.A., Valeev V.F., Nuzhdin V.I., Khaibullin R.I. Magnetic resonance studies of Ar-ion irradiated rutile. Magnetic Resonance in Solids. 2023;25(1):23102(8 pp.). https://doi.org/10.26907/mrsej-23102