Preview

Magnetic Resonance in Solids

Advanced search

Isotropic phase of nematics in porous media (in English)

Abstract

We study the effect of random porous matrices on the isotropic- nematic phase transition. Sufficiently close to the cleaning temperature, both random field and thermal fluctuations are important as disordering agents. A novel random field fixed point of renormalization group equation was found that controls the transition from isotropic to the replica symmetric phase. Explicit evaluation of the exponents in d  = 6 – ε dimensions yields to a dimensional reduction and three-exponent scaling.

About the Author

B. M. Khasanov
Kazan State University
Russian Federation

Kazan 420008



References

1. Liquid Crystals in Complex Geometries, edited by G.P. Crawford and S. Zumer (Taylor Francis, London, 1996).

2. X-1. Wu, W.I. Goldburg, M.X. Liu, and J.Z. Xue, Phys. Rev. Lett. 69, 470 (1992); T.Bellini, N.A.Clark, and D.W.Schaefer, ibid. 74, 2740 (1995).

3. A. Maritan, M. Cieplak, T. Bellini, and J.R. Banavar, Phys. Rev. Lett. 72, 4113 (1993); A. Maritan, M. Cieplak, and J.R. Banavar, (Ref. [1]), Chap.22.

4. K. Uzelac, A. Hasmy, and R. Jullien, Phys. Rev. Lett. 74, 422 (1995).

5. G.S. Iannacchione, S. Qian, D. Finotello, and F.M. Aliev, Phys. Rev. E 56, 554 (1997).

6. A. Mertelj and M. Copic, Phys. Rev. E 55, 504 (1997).

7. D.J. Cleaver, S. Kralj, T.J. Sluckin, and M.P. Allen, (Ref. [1]), Chap.21.

8. Y. Imry and S.K. Ma, Phys. Rev. Lett. 35, 1399 (1975).

9. E.I. Kats, JETP Lett. 65, 725 (1997).

10. L. Radzihovsky and J. Toner, Phys. Rev. Lett. 79, 4214 (1997).

11. J. Chakrabarti, Phys. Rev. Lett. 81, 385 (1998).

12. D.E. Feldman, Phys. Rev. Lett. 84, 4886 (2000).

13. N. Uchida, Phys. Rev. E 60, R13 (1999).

14. T. Nattermann, in Spin glasses and random fields, edited by A.P. Young (World Scientific, Singapore, 1998), P.277; e-print cond-mat/9705295.

15. M. Mezard, G. Parisi, and M. Virasoro, Spin-Glass Theory and Beyond, (World Scientific, Singapore, 1987); Vik.Dotsenko, Phys. Usp. Fiz. 38(5), 1 (1995).

16. G. Parisi, J. Phys. A 13, 1101 (1980).

17. C. De Dominicis, H. Orland, and T. Temesvari, J. Phys.I France 5, 987 (1995)

18. P.G. de Gennes and J. Prost, The Physics of Liquid Crystals, (Clarendon, Oxford, 1993).

19. R.G. Priest and T.C. Lubensky, Phys. Rev. B 13, 4159 (1976).

20. P.B. Vigman, A.I. Larkin, and V.M. Filev, Sov.Phys. JETP 41, 944 (1976).

21. J. Rudnick and D.R. Nelson, Phys. Rev. B 13, 2208 (1976).

22. G. Grinstein, Phys. Rev. Lett. 37, 944 (1976).

23. M. Schwartz and A. Soffer, Phys. Rev. Lett. 55, 2499 (1985).

24. D. Fisher, Phys. Rev. Lett. 56, 416 (1986).

25. J. Villain, J. Phys.(Paris) 46, 1843 (1985).

26. A. Aharony and A.B. Harris, Phys. Rev. Lett. 77, 3700 (1996).

27. T. Temesvari and C. De Dominicis, Phys. Rev. Lett. 89, 097204 (2002).


Review

For citations:


Khasanov B.M. Isotropic phase of nematics in porous media (in English). Magnetic Resonance in Solids. 2004;6(1):95-102.

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)