Preview

Magnetic Resonance in Solids

Advanced search

Ensemble silicon-based NMR quantum computers (in English)

Abstract

As an ensemble scheme of solid-state NMR quantum computers the scheme based on the array of 31P donor atoms which are spaced lengthwise of the strip gates is considered. The possible planar topology of such ensemble quantum computer is suggested. The estimation of the output NMR signal is performed and it is shown that for the number N >= 105 of ensemble elements involving L ~103 qubits each, the standard NMR methods are usable. As main mechanisms of decoherence for low temperature (< 0.1  K), the adiabatic processes of random modulation of qubit resonance frequency determined by secular part of nuclear spin hyperfine interaction with electron magnetic moment of basic atom and dipole-dipole interaction with nuclear moments of neighboring impurity atoms was considered, Estimations of allowed concentrations of magnetic impurities and of spin temperature whereby the required decoherence suppression are obtained. Semiclassical decoherence model of two qubit entangled states is also presented.

About the Authors

A. A. Kokin
Institute of Physics and Technology of RAS
Russian Federation

117218 Moscow



K. A. Valiev
Institute of Physics and Technology of RAS
Russian Federation

117218 Moscow



References

1. N.A. Gershenfeld, I.L. Chuang. Bulk Spin-Resonance Quantum Computation, Science, 1997, vol. 275, pp. 350–356.

2. I.L. Chuang, N. Gershenfeld, M.G. Kubinec, D.W. Leung. Bulk Quantum Computation with Nuclear Magnetic Resonance: Theory and Experiment, Proc. Roy. Soc. London, 1998, vol. A454, no. 1969, pp. 447–467.

3. D.G. Cory, M.D. Price, T.F. Havel. Nuclear Magnetic Resonance Spectroscopy: An Experimentally Accessible Paradigm for Quantum Computing, Physica D, 1997, vol. 120, no. 1–2, pp. 82–101.

4. D.G. Cory, A.F. Fahmy, T.F. Havel. Ensemble Quantum Computing by NMR Spectroscopy, Proc. Nat. Acad. Sci. USA, 1997, vol. 94, no. 5, pp. 1634–1639.

5. E. Knill, I. Chuang, R. Laflamme. Effective Pure States for Bulk Quantum Computation, Phys. Rev., 1998, vol. A57, no. 5, pp. 3348–3363.

6. A. Abragam. The Principles of Nuclear Magnetism. Oxford, Clarendon Press, 1961.

7. J.A. Jones. NMR Quantum Computation: a Critical Evaluation, Fortschr. Phys., 2000, vol. 48, no 9–11, pp. 909–924.

8. D.P. DiVincenzo. The Physical Implementation of Quantum Computation, Fortschr. Phys., 2000, vol. 48, no 9–11, pp. 771–783.

9. B.E. Kane. A Silicon-Based Nuclear Spin Quantum Computer, Nature (London), 1998, vol. 393, pp. 133–137.

10. B.E. Kane. Silicon-based Quantum Computation, Fortschr. Phys., 2000, vol. 48, no 9–11, pp. 1023–1041.

11. J.L. O’Brien, S.R. Schofield, M.Y. Simmons, R.G. Clark, A.S. Dzurak, N.J. Curson, B.E. Kane, N.S. McAlpine, M.E. Hawley, G.W. Brown. Towards the Fabrication of Phosphorus Qubits for a Silicon Quantum Computer, Phys. Rev., 2001, vol. B64, 161401 (R), 5p.

12. T.M. Buehler, R.P. McKinnon, N.T. Lumpkin, R. Brenner, D.J. Really, L.D. Macks, A.R. Hamilton, A.S. Dzurak, R.G. Clark. Self-Aligned Fabrication Process for Quantum Computer Devices, E-print LANL: arXiv:quantph/0208374, 2002.

13. K.A. Valiev, A.A. Kokin. Solid-State NMR Quantum Computer with Individual Access to Qubits and Some Their Ensemble Developments, E-print LANL: arXiv:quant-ph/9909008, 1999.

14. K.A. Valiev, A.A. Kokin. Quantum computers: reliance and reality. Second edition, Moscow-Izhevsk: R&C Dynamics, 2002 (in Russian), 320 p.

15. G. Ludwig, and H. Woodbury. Electron Spin Resonance in Semiconductors, New York: Academic Press, 1962.

16. K.A. Valiev. Magnetic Resonance on Nuclei of Paramagnetic Atoms, Zh. Eksp. Teor. Fiz., 1957, vol. 33, no. 4(10), pp. 1045–1047 (in Russian).

17. A.A. Kokin, K.A. Valiev. Problems in Realization of Large-Scale Ensamble Silicon-based NMR Quantum Computers, Quantum Computers & Computing, Moscow-Izhevsk: R&C Dynamics, 2002, vol. 3, no.1, pp. 25-45, Eprint LANL: arXiv:quant-ph/0201083.

18. G. Feher, E.A. Gere. Electron Spin Resonance Experiments on Donors in Silicon. II. Electron Spin Relaxation Effects. Phys. Rev., 1959, vol. 114, no. 5, pp. 1245–1256.

19. A. Abragam, M. Goldman. Nuclear Magnetism: Order & Disorder. Oxford: Claren.Press, 1982.

20. C.J. Welled, L.C.L. Hollenberg. Stochastic Noise as a Source of Decoherence in a Solid State Quantum Computer, E-print LANL: arXiv:quant-ph/0104055, 2001.

21. A.A. Kokin. Decoherence of Quantum States and its Suppression in Ensemble Large-Scale Solid State NMR Quantum Computers, E-print LANL: arXiv:quant-ph/0211096, 2002; Proc. SPIE, 2003, N.5128.


Review

For citations:


Kokin A.A., Valiev K.A. Ensemble silicon-based NMR quantum computers (in English). Magnetic Resonance in Solids. 2004;6(1):119-131.

Views: 41


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)