To the nature of irreversibility in linear systems (in English)
Abstract
New scenario of irreversibility for linear systems has been found and discussed. This scenario is based on the interpretation of the geometrical/physical meaning of the temporal fractional integral with complex and real fractional exponents. It has been shown that imaginary part of the fractional integral related to discrete-scale invariance (DSI) phenomenon and observed only for true regular (discrete) fractals. Numerical experiments show that the imaginary part of the complex fractional exponent can be well approximated by simple and finite combination of the leading sine/cosine log-periodical functions with period lnξ ( ξ is a scaling parameter). In the most cases analyzed the leading Fourier components give a pair of complex conjugated exponents defining the imaginary part of the complex fractional integral. For random fractals, where invariant scaling properties are realized only in the statistical sense the imaginary part of the complex exponent is averaged and the result is expressed in the form of the conventional Riemann-Liouville integral. The conditions for realization of reind and recaps elements with complex power-law exponents have been found. The fractal structures leading to pure log-periodic oscillations related to fractional integration with complex exponent are analyzed. Description of relaxation processes by kinetic equations containing complex fractional exponent and their possible recognition in the dielectric spectroscopy is discussed.
About the Authors
R. R. NigmatullinRussian Federation
420008 Kazan
A. Le Mehaute
France
72000 Le Mans
References
1. J. Keizer, Statistical Thermodynamics of Nonequilibrium Processes, ed. Springer-Verlag, New-York, 1987.
2. R.J. Zwanzig, Chem. Phys. 33 (1960) 1338; H. Mori, Progr. Theor. Phys. 33 (1965) 423.
3. D.N. Zubarev, Non-Equilibrium Statistical Mechanics, Nauka, Moscow, 1971; D.N. Zubarev and V.G. Morozov, Physica A, 120 (1983) 411.
4. H.G. Schuster, Deterministic Chaos, ed. Physik-Verlag, Weinheim, 1984.
5. K. Oldham and J. Spanier, the Fractional Calculus, ed. Academic Press, New-York and London, 1974.
6. R.R. Nigmatullin, Phys. Stat. Sol(b), 124 (1984) 389.
7. R.R. Nigmatullin. Theor. Math Phys. 90(3) (1992) 354.
8. A. Mehaute, R.R. Nigmatullin et L. Nivanen. Fleches du Temps et Geometrie Fractale, Paris, ed. ‘Hermez’, 1998 (in French).
9. R.R. Nigmatullin, S.I. Osokin. J. Signal Processing. 83 (2003) 2433.
10. D. Sornette. Phys. Rep. 297 (1998) 239.
11. R.S. Rutman. Theor. Math. Phys. 100(3) (1994) 476, (in Russian).
12. R.S. Rutman. Theor. Math. Phys. 105(3) (1995) 393, (in Russian).
13. Fu-Yao Ren, Zu-Guo Yu, Feng Su. Physics Letters A 219 (1996) 59.
14. Zu-Guo Yu, Fu-Yao Ren and Ji Zhou. J.Phys.A: Math. Gen. 30 (1997) 5569.
15. Fu-Yao Ren and Jin-Rong Liang. Physica A. 286 (2000) 45.
16. Applications of Fractional Calculus in Physics. Ed. R. Hilfer, ‘World Scientific’ Publ. House, 2000, chapter 2.
17. A. Johansen, D. Sornette and A.E. Hansen. Physica D 138 (2000) 302.
18. A. Johansen and D. Sornette. Int. J. Mod.Phys. 9 (1998) 433.
19. D. Stauffer and D. Sornette. Physica A 252 (1998) 271.
20. Y. Huang, G. Quillon, H. Saleur, and D. Sornette. Phys.Rev E. 55(6) (1997) 6433.
21. R.R. Nigmatullin. Appl. Mag. Res. 14 (1998) 601.
22. R.R. Nigmatullin. Physica A, 285 (2000) 547.
23. M.M. Abdul-Gader Jafar and R.R. Nigmatullin. Thin Solid Films, 396 (2001) 280.
24. R.R. Nigmatullin, M.M. Abdul-Gader Jafar, Naoki Shinyashiki, Seiichi Sudo and Shin Yagihara. J. Non-Crystalline Solids, 305 (2002) 96.
25. R.R. Nigmatullin, G. Smith. Physica A 320 (2003) 291.
26. M. Abramowitz and I. Stegun. Handbook of Mathematical Functions. Nat. Bureau of Standars 1964. chapter 6.
27. R.R. Nigmatullin, S.I. Osokin, and J.Smith. J. Phys. C: (Condens. Matter.) 15 (2003) 3481.
28. R.R. Nigmatullin, S.I. Osokin, and G. Smith. J. Phys. D (Applied Physics) 36 (2003) 2281.
29. R.M. Hill, L.A. Dissado and R.R. Nigmatullin. J. Phys. C: (Condens. Matter.) 3 (1991) 9773.
Review
For citations:
Nigmatullin R.R., Le Mehaute A. To the nature of irreversibility in linear systems (in English). Magnetic Resonance in Solids. 2004;6(1):165-179.