Synthesis and study of the cerium doped hydroxyapatite powders
https://doi.org/10.26907/mrsej-24103
Abstract
Hydroxyapatite (HAp) is an attractive material for creating biocompatible implants owing to its osteoregenerative properties, elemental and phase similarity to bone tissue. The flexible structure of the material allows the introduction of ionic impurities to improve physicochemical and biological characteristics while maintaining the space symmetry group. Rare earth ions are a new step in improving compounds to create luminescent bioimaging agent for application in diagnostics imaging medicine. Nanosized powder of HAp doped with cerium ions (Ce-HAp) was obtained in order to study the impurity localization and its oxidizing state with conventional and pulsed electron paramagnetic resonance (EPR) at X-band. Undoped and doped HAp powders were synthesized via precipitation technique. It was revealed, that Ce-HAp powders after synthesis and heating exhibit luminescence in visible wavelength range (380 and 420 nm) that confirms the presence of Ce3+ in HAp structure. Heating of Ce-HAp in the air atmosphere results in formation of CeO2 with low intensity of luminescence. EPR spectra of the doped sample confirms the Ce3+ incorporation into HAp structure. The powder-like EPR lineshape for the obtained powders can be simulated with g∥ = 3.47 and g⊥ = 0.51.
Keywords
About the Authors
Y. O. NikitinaRussian Federation
Moscow 119334
N. V. Petrakova
Russian Federation
Moscow 119334
E. I. Maksimenko
Russian Federation
Moscow 119334
S. V. Chizhevskaya
Russian Federation
Moscow 125480
S. M. Andreev
Russian Federation
Peterhof 198504
M. A. Sadovnikova
Russian Federation
Kazan 420008
F. F. Murzakhanov
Russian Federation
Kazan 420008
G. V. Mamin
Russian Federation
Kazan 420008
M. R. Gafurov
Russian Federation
Kazan 420008
V. S. Komlev
Russian Federation
Moscow 119334
References
1. Roberts T. T., Rosenbaum A. J., Organogenesis 8, 114 (2012).
2. Le Huec J., Schaeverbeke T., Clement D., Faber J., Le Rebeller A., Biomaterials 16, 113 (1995).
3. Hench L. L., Journal of the American Ceramic Society 74, 1487 (1991).
4. Tite T., Popa A., Balescu L., Bogdan I., Pasuk I., Ferreira J., Stan G., Materials (Basel) 11, 1 (2018).
5. Boanini E., Gazzano M., Bigi A., Acta Biomaterialia 6, 1882 (2010).
6. Guesmi Y., Lafi R., Agougui H., Jabli M., Oun A., Majumdar S., Hafiane A., Materials Chemistry and Physics 239, 122067 (2020).
7. Gabbasov B., Gafurov M., Starshova A., Shurtakova D., Murzakhanov F., Mamin G., Orlinskii S., Journal of Magnetism and Magnetic Materials 470, 109 (2019).
8. Rau J. V., Fadeeva I. V., Fomin A. S., Barbaro K., Galvano E., Ryzhov A. P., Murzakhanov F., Gafurov M., Orlinskii S., Antoniac I., Uskokovi´c V., ACS Biomaterials Science and Engineering 5, 6632 (2019).
9. Fadeeva I. V., Lazoryak B. I., Davidova G. A., Murzakhanov F. F., Gabbasov B. F., Petrakova N. V., Fosca M., Barinov S. M., Vadala G., Uskokovi´c V., Zheng Y., Rau J. V., Materials Science and Engineering C 129, 112410 (2021).
10. Makshakova O. N., Shurtakova D. V., Vakhin A. V., Grishin P. O., Gafurov M. R., Crystals 11, 1219 (2021).
11. Goldberg M., Gafurov M., Makshakova O., Smirnov V., Komlev V., Barinov S., Kudryavtsev E., Sergeeva N., Achmedova S., Mamin G., Murzakhanov F. F., Orlinskii S., The Journal of Physical Chemistry B 123, 9143 (2019).
12. Sadovnikova M. A., Murzakhanov F. F., Fadeeva I. V., Forysenkova A. A., Deyneko D. V., Mamin G. V., Gafurov M. R., Ceramics 5, 1154 (2022).
13. Fadeeva I. V., Deyneko D. V., Barbaro K., Davydova G. A., Sadovnikova M. A., Murzakhanov F. F., Fomin A. S., Yankova V. G., Antoniac I. V., Barinov S. M., Lazoryak B. I., Rau J. V., Nanomaterials 12, 852 (2022).
14. Hughes J. M., Cameron M., Mariano A. N., American Mineralogist 76, 1165 (1991).
15. Chen N., Pan Y., Weil J. A., American Mineralogist 87, 37 (2002).
16. Kuang Y., He X., Zhang Z., Li Y., Zhang H., Ma Y., Wu Z., Chai Z., Journal of Nanoscience and Nanotechnology 11, 4103 (2011).
17. Zheng K., Torre E., Bari A., Taccardi N., Cassinelli C., Morra M., Fiorilli S., Vitale-Brovarone C., Iviglia G., Boccaccini A. R., Materials Today Bio 5, 100041 (2020).
18. Nicolini V., Malavasi G., Menabue L., Lusvardi G., Benedetti F., Valeri S., Luches P., Journal of Materials Science 52, 8845 (2017).
19. Feng Z., Liao Y., Ye M., Journal of Materials Science: Materials in Medicine 16, 417 (2005).
20. Kaygusuz H., Torlak E., Akın-Evingu¨r G., O¨ zen I˙., Von Klitzing R., Erim F. B., International Journal of Biological Macromolecules 105, 1161 (2017).
21. Alpaslan E., Yazici H., Golshan N. H., Ziemer K. S., Webster T. J., ACS Biomaterials Science and Engineering 1, 1096 (2015).
22. Chen F., Huang P., Zhu Y.-J., Wu J., Cui D.-X., Biomaterials 33, 6447 (2012).
23. Ciobanu G., Bargan A. M., Luca C., Ceramics International 41, 12192 (2015).
24. Fleet M. E., Liu X., Pan Y., Journal of Solid State Chemistry 149, 391 (2000).
25. Cawthray J. F., Creagh A. L., Haynes C. A., Orvig C., Inorganic Chemistry 54, 1440 (2015).
26. Kazin P. E., Gazizova O. R., Karpov A. S., Jansen M., Tretyakov Y. D., Solid State Sciences 9, 82 (2007).
27. Kazin P. E., Zykin M. A., Gazizova O. R., Tretyakov Y. D., Zeitschrift fu¨r Anorganische und Allgemeine Chemie 629, 344 (2009).
28. Nikitina Y. O., Petrakova N., Demina A. Y., Kozyukhin S., Lysenkov A., Barinov S., Komlev V., Russian Journal of Inorganic Chemistry 66, 1067 (2021).
29. Bondar I. A., Vinogradova N. V., Demyanets L. N., Ezhova Z. A., Ilyukhin V. V., Kara-Ushanov V. Y., Komissarova L. N., Lazarevski E. V., Litvin B. N., Melnikov P. P., Murashov D. A., Orlovskii V. P., Palkina K. K., Petrova M. A., Rozanov I. A., Chudinova N. N., Fotiev A. A., Rare-Earth Compounds: Silicates, Germanates, Phosphates, Arsenates, and Vanadates (Nauka, 1983) p. 284.
30. Veljovi´c D., Joki´c B., Petrovi´c R., Palcevskis E., Dindune A., Mihailescu I. N., Jana´ckovi´c D., Ceramics International 35, 1407 (2009).
31. Petrakova N., Lysenkov A., Ashmarin A., Egorov A., Fedotov A. Y., Shvorneva L., Komlev V., Barinov S., Inorganic Materials: Applied Research 4, 362 (2013).
32. Masalov A., Viagin O., Maksimchuk P., Seminko V., Bespalova I., Aslanov A., Malyukin Y., Zorenko Y., Journal of Luminescence 145, 61 (2014).
33. Lin J., Yao G., Dong Y., Park B., Su M., Journal of Alloys and Compounds 225, 124 (1995).
34. Gaft M., Reisfeld R., Panczer G., Modern luminescence spectroscopy of minerals and materials (Springer, 2015) p. 356.
35. Machado T. R., Sczancoski J. C., Beltr´an-Mir H., Li M. S., Andres J., Cordoncillo E., Leite E., Longo E., Ceramics International 44, 236 (2018).
36. Shurtakova D. V., Grishin P. O., Gafurov M. R., Mamin G. V., Crystals 11, 1050 (2021).
37. Hofbauer W., Bittl R., Journal of Magnetic Resonance 147, 226 (2000).
38. Stoll S., Schweiger A., Journal of Magnetic Resonance 178, 42 (2006).
39. Edinach E., Uspenskaya Y. A., Gurin A. S., Babunts R. A., Asatryan G. R., Romanov N. G., Badalyan A. G., Baranov P. G., Physics of the Solid State 61, 1820 (2019).
40. Asatryan G., Kramushchenko D., Uspenskaya Y. A., Baranov P., Petrosyan A., Physics of the Solid State 56, 1150 (2014).
Review
For citations:
Nikitina Y.O., Petrakova N.V., Maksimenko E.I., Chizhevskaya S.V., Andreev S.M., Sadovnikova M.A., Murzakhanov F.F., Mamin G.V., Gafurov M.R., Komlev V.S. Synthesis and study of the cerium doped hydroxyapatite powders. Magnetic Resonance in Solids. 2024;26(1):24103 (11 pp.). https://doi.org/10.26907/mrsej-24103