Preview

Magnetic Resonance in Solids

Advanced search

DFT investigation of magneto-electric coupling at the antiferromagnetic/ferroelectric interfaces: LaMnO3/XTiO3 (X=Ba, Pb) heterostructure

https://doi.org/10.26907/mrsej-24106

Abstract

The primary benefit of incorporating a ferroelectric material into a complex heterostructure lies in the ability to manipulate various properties of the entire system using an external electric field. Specifically, the electric field can alter the polarization direction within the ferroelectric material, thereby influencing its structural properties. These structural changes, in turn, affect the electronic and magnetic properties of the neighboring material. The interfacial phenomena are of significant interest due to their potential to provide enhanced functionality in next-generation electronic devices. Inspired by the concept of employing ferroelectrics in heterostructure components, this study investigates the two-dimensional electron gas (2DEG) and the impact of ferroelectric polarization direction onto the electronic and magnetic properties. Lastly the presence of magnetoelectric coupling (ME) within the model systems of LaMnO3/BaTiO3 and LaMnO3/PbTiO3 heterostructures using density functional theory calculations was examined.

About the Authors

I. I. Piyanzina
Kazan Federal University; Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS
Russian Federation

Kazan 420008; Kazan 420029



R. F. Mamin
Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS
Russian Federation

Kazan 420029



O. V. Nedopekin
Kazan Federal University
Russian Federation

Kazan 420008



D. A. Tayurskii
Kazan Federal University
Russian Federation

Kazan 420008



References

1. Fredrickson K.D., Demkov A.A. Phys. Rev. B 91, 115126 (2015)

2. Niranjan M.K., Wang Y., Jaswal S.S., Tsymbal E.Y. Phys. Rev. Lett. 103, 016804 (2009)

3. Liu X., Tsymbal E.Y., Rabe K.M. Phys. Rev. B 97, 094107 (2018)

4. Weng Y., Niu W., Huang X., An M., Dong Sh. Phys. Rev. B 103, 214101 (2021)

5. Cao C., Chen S., Deng J., Li G., Zhang Q., Gu L., Ying T.P., Guo E.J., Guo J.G., Chen X. Chinese Physics Letters 39, 047301 (2022)

6. Kabanov V.V., Piyanzina I.I., Lysogorskiy Yu.V., Tayurskii D.A., Mamin R.F. Mater. Res. Express 7, 055020 (2020)

7. Niranjan M.K., Burton J.D., Velev J.P., Jaswal S.S., Tsymbal E.Y. Appl. Phys. Lett. 95, 052501 (2009)

8. Duan C.G., Jaswal S.S., Tsymbal E.Y.Appl. Phys. Lett. 97, 047201 (2006)

9. Niranjan M.K., Velev J.P., Duan C.G., Jaswal S.S., Tsymbal E.Y. Phys. Rev. B 78, 104405 (2008)

10. Demkov A.A., Niu Q., Li Z., Shi J., Wang E. Phys. Rev. B 80, 140415 (2009)

11. Baloni M., Sharma R.Ch., Singh H., Khan B., Singh M.K., Sati P.Ch., Thakur V.N., Kotnala R.K., Kumar A. J. Alloys Compd. 946, 169333 (2023)

12. Ciucivara A., Sahu B., Kleinman L. Phys. Rev. B 77, 092407 (2008)

13. Nguyen T.T., Yamauchi K., Oguchi T., Hoang N. N. J. Electron. Mater. 46, 3808–3814 (2017)

14. Burton J.D., Tsymbal E.Y. Phys. Rev. B 80, 174406 (2009)

15. Kresse G., Furthmu¨ller J. Comput. Mater. Sci. 6, 15–50 (1996)

16. Perdew J.P., Burke K., Ernzerhof M. Phys. Rev. Lett. 77, 3865–3868 (1996)

17. Kohn W., Sham L.J. Phys. Rev. 140, A1133–A1138 (1965)

18. Blochl P.E. Phys. Rev. B 50, 17953–17979 (1994)

19. Kresse G., Furthmu¨ller J. Phys. Rev. B 54, 11169–11186 (1996)

20. MedeA version 3.7; MedeA is a registered trademark of Materials Design, Inc., San Diego, USA.

21. Monkhorst H.J., Pack J.D. Phys. Rev. B 13, 5188–5192 (1976)

22. Blochl P.E., Jepsen O., Andersen O.K. Phys. Rev. B 49, 16223–16233 (1994)

23. Methfessel M., Paxton A.T. Phys. Rev.B 40, 3616–3621 (1989)

24. Dudarev S.L., Botton G.A., Savrasov S.Y., Humphreys C.J., Sutton A.P. Phys. Rev. B 57, 1505–1509 (1998)

25. Calderon C.E., Plata J.J., Toher C., Oses C., Levy O., Fornari M., Natan A., Mehl M.J., Hart G., Nardelli M.B., Curtarolo S. Comput. Mater. Sci. 108, 233–238 (2015)

26. Wang L., Maxisch T., Ceder G. Phys. Rev. B 73, 195107 (2006)

27. Piyanzina I.I., Kopp T., Lysogorskiy Yu.V., Tayurskii D.A., Eyert V. J. Phys.: Condens. Matter 29, 095501 (2017)

28. Piyanzina I.I., Eyert V., Lysogorskiy Yu.V., Tayurskii D.A., Kopp T. J. Phys.: Condens. Matter 31, 295601 (2019)

29. Piyanzina I.I., Mamin R.F. J. Supercond. Nov. Magn. 35, 2225–2229 (2022)

30. Kabanov V.V., Piyanzina I.I., Tayurskii D.A., Mamin R.F. Phys. Rev. B 98, 094522 (2018)

31. Piyanzina I.I., Mamin R.F. J. Mater. Sci. 57, 21620–21629 (2022)


Review

For citations:


Piyanzina I.I., Mamin R.F., Nedopekin O.V., Tayurskii D.A. DFT investigation of magneto-electric coupling at the antiferromagnetic/ferroelectric interfaces: LaMnO3/XTiO3 (X=Ba, Pb) heterostructure. Magnetic Resonance in Solids. 2024;26(1):24106 (9 pp.). https://doi.org/10.26907/mrsej-24106

Views: 44


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)