DFT investigation of magneto-electric coupling at the antiferromagnetic/ferroelectric interfaces: LaMnO3/XTiO3 (X=Ba, Pb) heterostructure
https://doi.org/10.26907/mrsej-24106
Abstract
The primary benefit of incorporating a ferroelectric material into a complex heterostructure lies in the ability to manipulate various properties of the entire system using an external electric field. Specifically, the electric field can alter the polarization direction within the ferroelectric material, thereby influencing its structural properties. These structural changes, in turn, affect the electronic and magnetic properties of the neighboring material. The interfacial phenomena are of significant interest due to their potential to provide enhanced functionality in next-generation electronic devices. Inspired by the concept of employing ferroelectrics in heterostructure components, this study investigates the two-dimensional electron gas (2DEG) and the impact of ferroelectric polarization direction onto the electronic and magnetic properties. Lastly the presence of magnetoelectric coupling (ME) within the model systems of LaMnO3/BaTiO3 and LaMnO3/PbTiO3 heterostructures using density functional theory calculations was examined.
About the Authors
I. I. PiyanzinaRussian Federation
Kazan 420008; Kazan 420029
R. F. Mamin
Russian Federation
Kazan 420029
O. V. Nedopekin
Russian Federation
Kazan 420008
D. A. Tayurskii
Russian Federation
Kazan 420008
References
1. Fredrickson K.D., Demkov A.A. Phys. Rev. B 91, 115126 (2015)
2. Niranjan M.K., Wang Y., Jaswal S.S., Tsymbal E.Y. Phys. Rev. Lett. 103, 016804 (2009)
3. Liu X., Tsymbal E.Y., Rabe K.M. Phys. Rev. B 97, 094107 (2018)
4. Weng Y., Niu W., Huang X., An M., Dong Sh. Phys. Rev. B 103, 214101 (2021)
5. Cao C., Chen S., Deng J., Li G., Zhang Q., Gu L., Ying T.P., Guo E.J., Guo J.G., Chen X. Chinese Physics Letters 39, 047301 (2022)
6. Kabanov V.V., Piyanzina I.I., Lysogorskiy Yu.V., Tayurskii D.A., Mamin R.F. Mater. Res. Express 7, 055020 (2020)
7. Niranjan M.K., Burton J.D., Velev J.P., Jaswal S.S., Tsymbal E.Y. Appl. Phys. Lett. 95, 052501 (2009)
8. Duan C.G., Jaswal S.S., Tsymbal E.Y.Appl. Phys. Lett. 97, 047201 (2006)
9. Niranjan M.K., Velev J.P., Duan C.G., Jaswal S.S., Tsymbal E.Y. Phys. Rev. B 78, 104405 (2008)
10. Demkov A.A., Niu Q., Li Z., Shi J., Wang E. Phys. Rev. B 80, 140415 (2009)
11. Baloni M., Sharma R.Ch., Singh H., Khan B., Singh M.K., Sati P.Ch., Thakur V.N., Kotnala R.K., Kumar A. J. Alloys Compd. 946, 169333 (2023)
12. Ciucivara A., Sahu B., Kleinman L. Phys. Rev. B 77, 092407 (2008)
13. Nguyen T.T., Yamauchi K., Oguchi T., Hoang N. N. J. Electron. Mater. 46, 3808–3814 (2017)
14. Burton J.D., Tsymbal E.Y. Phys. Rev. B 80, 174406 (2009)
15. Kresse G., Furthmu¨ller J. Comput. Mater. Sci. 6, 15–50 (1996)
16. Perdew J.P., Burke K., Ernzerhof M. Phys. Rev. Lett. 77, 3865–3868 (1996)
17. Kohn W., Sham L.J. Phys. Rev. 140, A1133–A1138 (1965)
18. Blochl P.E. Phys. Rev. B 50, 17953–17979 (1994)
19. Kresse G., Furthmu¨ller J. Phys. Rev. B 54, 11169–11186 (1996)
20. MedeA version 3.7; MedeA is a registered trademark of Materials Design, Inc., San Diego, USA.
21. Monkhorst H.J., Pack J.D. Phys. Rev. B 13, 5188–5192 (1976)
22. Blochl P.E., Jepsen O., Andersen O.K. Phys. Rev. B 49, 16223–16233 (1994)
23. Methfessel M., Paxton A.T. Phys. Rev.B 40, 3616–3621 (1989)
24. Dudarev S.L., Botton G.A., Savrasov S.Y., Humphreys C.J., Sutton A.P. Phys. Rev. B 57, 1505–1509 (1998)
25. Calderon C.E., Plata J.J., Toher C., Oses C., Levy O., Fornari M., Natan A., Mehl M.J., Hart G., Nardelli M.B., Curtarolo S. Comput. Mater. Sci. 108, 233–238 (2015)
26. Wang L., Maxisch T., Ceder G. Phys. Rev. B 73, 195107 (2006)
27. Piyanzina I.I., Kopp T., Lysogorskiy Yu.V., Tayurskii D.A., Eyert V. J. Phys.: Condens. Matter 29, 095501 (2017)
28. Piyanzina I.I., Eyert V., Lysogorskiy Yu.V., Tayurskii D.A., Kopp T. J. Phys.: Condens. Matter 31, 295601 (2019)
29. Piyanzina I.I., Mamin R.F. J. Supercond. Nov. Magn. 35, 2225–2229 (2022)
30. Kabanov V.V., Piyanzina I.I., Tayurskii D.A., Mamin R.F. Phys. Rev. B 98, 094522 (2018)
31. Piyanzina I.I., Mamin R.F. J. Mater. Sci. 57, 21620–21629 (2022)
Review
For citations:
Piyanzina I.I., Mamin R.F., Nedopekin O.V., Tayurskii D.A. DFT investigation of magneto-electric coupling at the antiferromagnetic/ferroelectric interfaces: LaMnO3/XTiO3 (X=Ba, Pb) heterostructure. Magnetic Resonance in Solids. 2024;26(1):24106 (9 pp.). https://doi.org/10.26907/mrsej-24106