Preview

Magnetic Resonance in Solids

Advanced search

Room temperature ferromagnetism of graphite: Impurity induced vs intrinsic origin

https://doi.org/10.26907/mrsej-24107

Abstract

In this study, we report an experimental attempt to resolve whether ferromagnetism of graphite nanoflakes is an intrinsic phenomenon or it solely originates from impurities. A comparative study of either a nominally undoped or intentionally contaminated with NiO or Gd2O3 samples was performed. We show, first, that a detectable by X-ray diffraction contamination may occur via the agate mortar/pestle working surfaces if prior to sample dispersion it was used for grinding of hard oxides. Second, we find a systematic trend in a development of a FM component of all three samples under vacuum annealing at 400 or 800C. Third, we notice that the samples notably contaminated with NiO or Gd2O3 do not reveal any drastic enhancement in ferromagnetism with respect to the sample free from intentional doping, contrary to an expectation related to nickel and gadolinium oxides reduction to metallic ferromagnetic at room temperature state. As a result, we conclude that ferromagnetism of graphite nanoflakes is probably an intrinsic phenomenon that could be stimulated slightly by NiO or Gd2O3 impurities, though an impact of the agate (SiO2) contamination itself may also play a role.

About the Authors

M. Saad
Kazan Federal University
Russian Federation

Kazan 420008



S. I. Nikitin
Kazan Federal University
Russian Federation

Kazan 420008



D. A. Tayurskii
Kazan Federal University
Russian Federation

Kazan 420008



A. G. Kiiamov
Kazan Federal University
Russian Federation

Kazan 420008



R. V. Yusupov
Kazan Federal University
Russian Federation

Kazan 420008



References

1. Sharpe A.L., Fox E.J., Barnard A.W., Finney J., Watanabe K., Taniguchi T., Kastner M.A., Goldhaber-Gordon D. Science 365 605 (2019)

2. Sharpe A.L., Fox E.J., Barnard A.W., Finney J., Watanabe K., Taniguchi T., Kastner M.A., Goldhaber-Gordon D. Nano Letters 21, 4299 (2021)

3. Esquinazi P., Setzer A., Hohne R., Semmelhack C., Kopelevich Y., Spemann D., Butz T., Kohlstrunk B., Losche M. Phys. Rev. B 66, 024429 (2002)

4. Červenka J., Katsnelson M.I., Flipse C.F.J. Nature Physics 5, 840 (2009)

5. Sepioni M., Nair R.R., Tsai I.L., Geim A.K., Grigorieva I.V. Europhys. Lett. 97, 47001 (2012)

6. Yazyev O.V. Reports on Progress in Physics 73 , 056501 (2010)

7. Wang Y., Huang Y., Song Y., Zhang X., Ma, Y., Liang J., Chen Y. Nano Lett. 9, 220 (2009)

8. Wood R.A., Lewis M.H., Lees M.R., Bennington S.M., Cain M.G., Kitamura N. Journal of Physics: Cond. Matt. 14, L385 (2002)

9. Ma Y.W., Lu Y.H., Yi J.B., Feng Y.P., Herng T.S., Liu X., Gao D.Q., Xue D.S., Xue J.M., Ouyang J.Y., Ding J. Nature Communications 3, 727 (2012)

10. Ma S., Xia J.H., Srikanth V.V., Sun X., Staedler T., Jiang X., Yang F., Zhang Z.D. Appl. Phys. Lett. 95, 263105 (2009)

11. Magda G.Z., Jin X., Hagymśi I., Vancsó P., Osváth Z., Nemes-Incze P., Hwang C., Biro L.P., Tapasztó L.Nature 514, 608 (2014)

12. Wang C., Diao D. Appl. Phys. Lett. 102, 052402 (2013)

13. Haruyama J. Electronics 2, 368 (2013)

14. Milev A., Dissanayake D.M.A.S., Kannangara G.S.K., Kumarasinghe A.R. Nat. Mater. 15, 16294 (2013)

15. Scheike T., Böhlmann W., Esquinazi P., Barzola-Quiquia J., Ballestar A., Setzer A. Adv. Mat. 24, 5826 (2012)

16. Kopelevich Y., Esquinazi P., Torres J.H.S., Moehlecke S. J. Low Temp. Phys. 119, 691 (2000)

17. Saad M., Gilmutdinov I.F., Kiiamov A.G., Tayurskii D.A., Nikitin S.I., Yusupov R.V. JETP Lett. 107, 37 (2018)

18. Saad M., Gilmutdinov I.F., Rogov A.M., Nikitin S.I., Tayurskii D.A., Yusupov R.V. Russ. Phys. J. 61, 1247 (2018)

19. Nakada K., Fujita M., Dresselhaus G., Dresselhaus M.S. Phys. Rev. B 54, 17954 (1996)

20. Bogdanov K., Fedorov A., Osipov V., Enoki T., Takai K., Hayashi T., Ermakov V., Moshkalev S., Baranov A. Carbon 73, 78 (2014)

21. Miao Q., Wang L., Liu Z., Wei B., Wang J., Liu X., Fei W. Sci. Rep. 7, 5877 (2017)

22. Saad M., Rogov A.M., Kiiamov A.G., Nikitin S.I., Tayurskii D.A., Yusupov R.V. Vacuum 199, 110977 (2022)

23. Saad M., Kiiamov A.G., Nikitin S.I., Tayurskii D.A., Yusupov R.V. Inorganic Materials: Applied Research 14, 118 (2023)

24. Miao X., Tongay S., Hebard A.F. Carbon 50, 1614 (2012)

25. Díaz-Fernández D., Méndez J., Del Campo A., Mossanek R.J.O., Abbate M., Rodríguez M.A., Domínguez-Cañizares G., Bomatí-Miguel O., Gutiérrez A., Soriano L. Carbon 85, 89 (2015)


Review

For citations:


Saad M., Nikitin S.I., Tayurskii D.A., Kiiamov A.G., Yusupov R.V. Room temperature ferromagnetism of graphite: Impurity induced vs intrinsic origin. Magnetic Resonance in Solids. 2024;26(1):24107 (10 pp.). https://doi.org/10.26907/mrsej-24107

Views: 53


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)