Photoinduced EPR and ENDOR studies of the divacancies and nitrogen-vacancy defects in silicon carbide
https://doi.org/10.26907/mrsej-24208
Abstract
Defects (color centers) in wide-gap semiconductors are considered as the basis for the realization of highly sensitive sensors, single-photon sources, and for the implementation of quantum technologies. Silicon carbide (SiC) crystal can serve as a reliable solid-state matrix for the range of high-spin (electron spin S = 1) color centers to become an alternative to the diamond with the widely-known nitrogen-vacancy (NV-) centers. This paper reviews the electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) studies of the divacancies (VV) and negatively charged NV- centers in different SiC polytypes. The main spin Hamiltonian components of non-equivalent spin defects in SiC are presented depending on their structural features (positions) and local environment: the zero-field splitting (D ≈ 1.3 GHz), hyperfine (A ≈ 1.1 MHz) and quadrupole (P ≈ 1.8 MHz) interaction values. The luminescence spectrum of the color center in SiC (λ = 1.1-1.25μm) in near-IR range is favorable for fiber-optic channels (O-band) and biological objects study, which brings these defects to a higher level of practical application.
Keywords
About the Authors
F. F. MurzakhanovRussian Federation
Kazan 420008
L. R. Latypova
China
Harbin 150001
Zhengzhou 450000
G. V. Mamin
Russian Federation
Kazan 420008
M. A. Sadovnikova
Russian Federation
Kazan 420008
H. J. von Bardeleben
France
Paris 75005
M. R. Gafurov
Russian Federation
Kazan 420008
References
1. Cao Y., Romero J., Olson J. P., Degroote M., Johnson P. D., Kieferov´a M., Kivlichan I. D., Menke T., Peropadre B., Sawaya N. P., Sim S., Veis L., Aspuru-Guzik A., Chem. Rev. 119, 10856 (2019).
2. Tilley R. J., Defects in Solids (John Wiley & Sons, 2008) 552 p.
3. Iv´ady V., Abrikosov I. A., Gali A., npj Comp. Mat. 4, 76 (2018).
4. Thiering G., Gali A., in Semicond. and Semimetals, Vol. 103, edited by Nebel C. E., Aharonovich I., Mizuochi N., Hatano M. (Elsevier, 2020) pp. 1–36.
5. Castelletto S., Boretti A., J. Phys.: Photonics 2, 022001 (2020).
6. Awschalom D. D., Hanson R., Wrachtrup J., Zhou B. B., Nature Photonics 12, 516 (2018).
7. Ruf M., Wan N. H., Choi H., Englund D., Hanson R., J. Appl. Phys. 130 (2021).
8. Rembold P., Oshnik N., Mu¨ller M. M., Montangero S., Calarco T., Neu E., AVS Quant. Science 2 (2020).
9. Du C., Van der Sar T., Zhou T. X., Upadhyaya P., Casola F., Zhang H., Onbasli M. C., Ross C. A., Walsworth R. L., Tserkovnyak Y., Yacoby A., Science 357, 195 (2017).
10. Atatu¨re M., Englund D., Vamivakas N., Lee S.-Y., Wrachtrup J., Nature Rev. Mater. 3, 38 (2018).
11. Soltamov V., Kasper C., Poshakinskiy A., Anisimov A., Mokhov E., Sperlich A., Tarasenko S., Baranov P., Astakhov G., Dyakonov V., Nature Comm. 10, 1678 (2019).
12. Koehl W. F., Buckley B. B., Heremans F. J., Calusine G., Awschalom D. D., Nature 479, 84 (2011).
13. von Bardeleben H. J., Cantin J. L., Cs´or´e A., Gali A., Rauls E., Gerstmann U., Phys. Rev. B 94, 121202 (2016).
14. Xu M., Girish Y. R., Rakesh K. P., Wu P., Manukumar H. M., Byrappa S. M., Byrappa K., Material. Today Comm. 28, 102533 (2021).
15. Soltamov V. A., Yavkin B. V., Mamin G. V., Orlinskii S. B., Breev I. D., Bundakova A. P., Babunts R. A., Anisimov A. N., Baranov P. G., Phys. Rev. B 104, 125205 (2021).
16. Yavkin B., Mamin G., Orlinskii S., J. Magn. Res. 262, 15 (2016).
17. Yavkin B., Gafurov M., Volodin M., Mamin G., Orlinskii S. B., in Experimental Methods in the Physical Sciences, Vol. 50, edited by Shukla A. K. (Elsevier, 2019) pp. 83–113.
18. Wolfowicz G., Heremans F. J., Anderson C. P., Kanai S., Seo H., Gali A., Galli G., Awschalom D. D., Nature Rev. Mater. 6, 906 (2021).
19. Cs´or´e A., Von Bardeleben H. J., Cantin J.-L., Gali A., Phys. Rev. B 96, 085204 (2017).
20. Vainer V., Il’in V., Sov. Phys. Solid State 23, 2126 (1981).
21. Son N., Shafizadeh D., Ohshima T., Ivanov I., J. Appl. Phys. 132 (2022).
22. Murzakhanov F., Sadovnikova M., Mamin G., Nagalyuk S., von Bardeleben H. J., Schmidt W., Biktagirov T., Gerstmann U., Soltamov V., J. Appl. Phys. 134 (2023).
23. Murzakhanov F., Vacancy centers in silicon carbide 4H-SiC and boron nitride hBN: electronic structure and spin polarization of triplet states, PhD thesis in Physics and Mathematics (2023), 124 p., Kazan Federal University.
24. Magnusson B., Son N. T., Cs´or´e A., G¨allstr¨om A., Ohshima T., Gali A., Ivanov I. G., Phys. Rev. B 98, 195202 (2018).
25. Murzakhanov F., Yavkin B., Mamin G., Orlinskii S., von Bardeleben H. J., Biktagirov T., Gerstmann U., Soltamov V., Phys. Rev. B 103, 245203 (2021).
26. Khazen K., von Bardeleben H. J., Zargaleh S. A., Cantin J.-L., Zhao M., Gao W., Biktagirov T., Gerstmann U., Phys. Rev. B 100, 205202 (2019).
27. von Bardeleben H. J., Cantin J.-L., Gerstmann U., Schmidt W. G., Biktagirov T., Nano Lett. 21, 8119 (2021).
28. Mu Z., Zargaleh S. A., von Bardeleben H. J., Froch J. E., Nonahal M., Cai H., Yang X., Yang J., Li X., Aharonovich I., Gao W., Nano Lett. 20, 6142 (2020).
29. Wang J.-F., Yan F.-F., Li Q., Liu Z.-H., Liu H., Guo G.-P., Guo L.-P., Zhou X., Cui J.-M., Wang J., Zhou Z.-Q., Xu X.-Y., Xu J.-S., Li C.-F., Guo G.-C., Phys. Rev. Lett. 124, 223601 (2020).
30. Zhu Y., Kovos B., Onizhuk M., Awschalom D., Galli G., Phys. Rev. Mater. 5, 074602 (2021).
Review
For citations:
Murzakhanov F.F., Latypova L.R., Mamin G.V., Sadovnikova M.A., von Bardeleben H.J., Gafurov M.R. Photoinduced EPR and ENDOR studies of the divacancies and nitrogen-vacancy defects in silicon carbide. Magnetic Resonance in Solids. 2024;26(2):24208 (10 pp.). https://doi.org/10.26907/mrsej-24208