Influence of frequency effect on the Condon shape of electron-vibrational absorption spectrum in the single oscillator model
https://doi.org/10.26907/mrsej-24214
Abstract
Analytical expressions for generating function and form function of absorption spectrum of a paramagnetic ion interacting with an oscillator at zero temperature are derived in the adiabatic and Condon approximations taking into account frequency effect: quadratic dependence of adiabatic potential on the vibrational coordinate is obtained by considering linear electron-vibrational interaction in the second order of perturbation theory. Approximations made throughout the paper and their limitations are discussed in detail.
Keywords
About the Authors
O. V. SolovyevRussian Federation
Kremlevskaya 18, Kazan 420008
R. P. Mironov
Russian Federation
Kremlevskaya 18, Kazan 420008
M. Djiguiba
Russian Federation
Kremlevskaya 18, Kazan 420008
References
1. Malkin B.Z. Crystal Field and Electron-Phonon Interaction in Rare-Earth Ionic Paramag nets, in Spectroscopy of Solids Containing Rare-Earth Ions, ed. by A.A. Kaplyanskii and R.M. Macfarlane, Ch. 2, pp. 13-50, North-Holland, Amsterdam (1987)
2. Malkin B.Z., Solovyev O.V., Malishev A.Yu., Saikin S.K. J. Lumin. 125, 175 (2007)
3. Kirm M., Stryganyuk G., Vielhauer S., Zimmerer G., Makhov V.N., Malkin B.Z., Solovyev O.V., Abdulsabirov R.Yu., Korableva S.L. Phys. Rev. B 75, 075111 (2007)
4. Solovyev O.V., Phys. Solid State 52, 728 (2010)
5. Yunusov R.Yu., Solovyev O.V. J. Phys.: Conf. Ser. 324, 012035 (2011)
6. Solovyev O.V., Yunusov R.Yu. Opt. Spectrosc. 116, 754 (2014)
7. Perlin Yu.E., Tsukerblat B.S. Electron-vibrational interaction effects on optical spectra of impurity paramagnetic ions (Stiintza, Kishinev, 1974) 367 p. [in Russian]
8. Williams F.E. J. Opt. Soc. Am. 39, 648 (1949)
9. Kubo R., Toyodzawa Y. Prog. Theor. Phys. 13, 160 (1955)
Review
For citations:
Solovyev O.V., Mironov R.P., Djiguiba M. Influence of frequency effect on the Condon shape of electron-vibrational absorption spectrum in the single oscillator model. Magnetic Resonance in Solids. 2024;26(2):24214 (12 pp.). https://doi.org/10.26907/mrsej-24214