Preview

Magnetic Resonance in Solids

Advanced search

Quantum cellular automata based on mixed-valence molecules: Some theoretical hints for cell design

https://doi.org/10.26907/mrsej-24216

Abstract

The purpose of this short review article is to discuss at a simple qualitative level some key requirements the mixed-valence (MV) molecules should meet to be potentially applicable as cells of quantum cellular automata (QCA), and also how different interactions affect their fulfillment. We focus on two requirements, which are closely related to encoding and propagating of binary information within the electronic circuits and power dissipation caused by the logical operations. The physical features behind these requirements are the following: the ability of MV molecules to be efficiently switched between two logical binary states which assumes high polarizability manifesting itself in a strong non-linear cell-cell response and a low heat release caused by molecular rearrangements accompanying logical operations. We discuss the role of such electronic interactions as intramolecular electron transfer, intramolecular interelectronic Coulomb repulsion and the interaction of the excess electrons of a molecular cell with the electric field produced by the neighboring polarized cell. The pivotal role of the interaction of the excess electrons with the molecular vibrations (pseudo Jahn-Teller vibronic coupling) is discussed as well. Finally, the optimal conditions expressed as a parametric regime ensuring simultaneous fulfillment of the aforenamed requirements are discussed.

About the Authors

B. Tsukerblat
Ben-Gurion University of the Negev
Israel

84105 Beer-Sheva



V. Belonovich
Federal Research Center of Problems of Chemical Physics and Medicine Chemistry; Moscow Institute of Physics and Technology
Russian Federation

Chernogolovka 142432

Dolgoprudny 141701



A. Palii
Federal Research Center of Problems of Chemical Physics and Medicine Chemistry
Russian Federation

Chernogolovka 142432



References

1. Lent C. S., Tougaw P., Porod W., Bernstein G. H., Nanotech. 4, 49 (1993).

2. Lent C. S., Tougaw P. D., Porod W., Appl. Phys. Lett. 62, 714 (1993).

3. Lent C. S., Tougaw P. D., J. Appl. Phys. 74, 6227 (1993).

4. Lent C. S., Isaksen B., Lieberman M., J. American Chem. Soc. 125, 1056 (2003).

5. Tougaw P. D., Lent C. S., J. Appl. Phys. 75, 1818 (1994).

6. Lent C. S., Tougaw P. D., Proc. IEEE 85, 541 (1997).

7. Porod W., Lent C., Bernstein G. H., Orlov A. O., Hamlani I., Snider G. L., Merz J. L., Inter. J. Electron. 86, 549 (1999).

8. T´oth G., Lent C. S., J. Appl. Phys. 85, 2977 (1999).

9. Lent C. S., Science 288, 1597 (2000).

10. T´oth G., Lent C. S., Phys. Rev. A 63, 052315 (2001).

11. Qi H., Sharma S., Li Z., Snider G. L., Orlov A. O., Lent C. S., Fehlner T. P., J. Amer. Chem. Soc. 125, 15250 (2003).

12. Qi H., Gupta A., Noll B. C., Snider G. L., Lu Y., Lent C., Fehlner T. P., J. Amer. Chem. Soc. 127, 15218 (2005).

13. Lu Y., Lent C. S., J. Comp. Electron. 4, 115 (2005).

14. Lu Y., Quardokus R., Lent C. S., Justaud F., Lapinte C., Kandel S. A., J. Amer. Chem. Soc. 132, 13519 (2010).

15. Braun-Sand S. B., Wiest O., J. Phys. Chem. A 107, 285 (2003).

16. Zhao Y., Guo D., Liu Y., He C., Duan C., Chem. Comm. , 5725 (2008).

17. Schneider B., Demeshko S., Neudeck S., Dechert S., Meyer F., Inorg. Chem. 52, 13230 (2013).

18. Lau V. C., Berben L. A., Long J. R., J. Amer. Chem. Soc. 124, 9042 (2002).

19. Palii A., Aldoshin S., Zilberg S., Tsukerblat B., Phys. Chem. Chem. Phys. 22, 25982 (2020).

20. Palii A., Zilberg S., Rybakov A., Tsukerblat B., J. Phys. Chem. C 123, 22614 (2019).

21. Ruben M., Rojo J., Romero-Salguero F. J., Uppadine L. H., Lehn J.-M., Angewandte Chem. Internat. Edit. 43, 3644 (2004).

22. Tsukerblat B., Palii A., Clemente-Juan J. M., Pure Appl. Chem. 87, 271 (2015).

23. Tsukerblat B., Palii A., Clemente-Juan J. M., Coronado E., J. Chem. Phys. 143 (2015).

24. Palii A., Tsukerblat B., Clemente-Juan J. M., Coronado E., J. Phys. Chem. C 120, 16994 (2016).

25. Tsukerblat B. S., Palii A., Clemente-Juan J., Suaud N., Coronado E., Acta Phys. Polon. A 133, 329 (2018).

26. Tsukerblat B., Palii A., Aldoshin S., Israel J. Chem. 60, 527 (2020).

27. Tsukerblat B., Palii A., Aldoshin S., Magnetochem. 7, 66 (2021).

28. Palii A., Aldoshin S., Tsukerblat B., Dalton Transact. 51, 286 (2022).

29. Palii A., Rybakov A., Aldoshin S., Tsukerblat B., Phys. Chem. Chem. Phys. 21, 16751 (2019).

30. Clemente-Juan J. M., Palii A., Coronado E., Tsukerblat B., J. Chem. Theor. Comput. 12, 3545 (2016).

31. Tsukerblat B., Palii A., Zilberg S., Korchagin D., Aldoshin S., Clemente-Juan J. M., J. Chem. Phys. 157 (2022).

32. Palii A., Belonovich V., Aldoshin S., Tsukerblat B., Chem. Phys. 563, 111679 (2022).

33. Palii A., Aldoshin S., Tsukerblat B., Magnetochem. 8, 92 (2022).

34. Palii A., Belonovich V., Tsukerblat B., Phys. Chem. Chem. Phys. 25, 17526 (2023).

35. Palii A., Belonovich V., Aldoshin S., Zilberg S., Tsukerblat B., J. Phys. Chem. A 127, 9030 (2023).

36. Macrae R. M., J. Phys. Chem. Solids 177, 111303 (2023).

37. Orlov A. O., Amlani I., Toth G., Lent C. S., Bernstein G. H., Snider G. L., Appl. Phys. Lett. 74, 2875 (1999).

38. Zilberg S., Stekolshik Y., Palii A., Tsukerblat B., J. Phys. Chem. A 126, 2855 (2022).

39. Zilberg S., Tsukerblat B., Palii A., J. Phys. Chem. A 127, 3281 (2023).

40. Piepho S. B., Krausz E. R., Schatz P., J. Amer. Chem. Soc. 100, 2996 (1978).

41. Englman R., The Jahn-Teller effect in molecules and crystals (Wiley-Interscience, New York, 1972) 350 p.

42. Bersuker I. B., Polinger V. Z., Vibronic interactions in molecules and crystals, Vol. 49 (Springer-Verlag, Berlin, 1989) 422 p.

43. Tsukerblat B., Klokishner S., Palii A., “Jahn–Teller Effect in Molecular Magnetism: An Overview,” in The Jahn-Teller Effect: Fundamentals and Implications for Physics and Chemistry, edited by K¨oppel H., Yarkony D. R., Barentzen H. (Springer Berlin Heidelberg, 2009) pp. 555–619.

44. Tougaw P. D., Lent C. S., Porod W., J. Appl. Phys. 74, 3558 (1993).

45. Timler J., Lent C. S., J. Appl. Phys. 91, 823 (2002).

46. Rahimi E., Micro & Nano Lett. 11, 369 (2016).

47. Rahimi E., Reimers J. R., Phys. Chem. Chem. Phys. 20, 17881 (2018).

48. Pidaparthi S. S., Lent C. S., J. Appl. Phys. 131 (2022).


Review

For citations:


Tsukerblat B., Belonovich V., Palii A. Quantum cellular automata based on mixed-valence molecules: Some theoretical hints for cell design. Magnetic Resonance in Solids. 2024;26(2):24216 (14 pp.). https://doi.org/10.26907/mrsej-24216

Views: 49


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)