Magnetoelectric and spin-lattice effects in Fe/BaTiO3 heterostructure: non-collinear DFT calculations
https://doi.org/10.26907/mrsej-25203
Abstract
This article uses density functional theory calculations to explore the structural, electronic, and magnetic features of a ferromagnet/ferroelectric Fe/BaTiO3 heterostructure, which possesses a complex non-collinear magnetic structure. The presented research focuses on the evolution of spin systems under the influence of external fields, namely the reorientation of magnetic moments driven by electric-field-induced polarization switching and lattice strain. We demonstrated that the electronic and magnetic properties of the thin ferromagnetic Fe film can be effectively tuned by applying an external electric field - simply by altering the polarization direction of the ferroelectric BaTiO3. By incorporating spin-orbit coupling into the computation scheme, we evaluated the relative structural distortions, magnetic moments in atomic layers, atom- and orbital-resolved density of states, magnetic anisotropy energies, and easy magnetization directions.
Keywords
About the Authors
I. I. PiyanzinaArmenia
Yerevan 0025; Kazan 420029
R. Burganova
Russian Federation
Kazan 420008
A. A. Kamashev
Russian Federation
Kazan 420029
R. F. Mamin
Russian Federation
Kazan 420029
References
1. Revathy R., Kalarikkal N., Varma M. R., Surendran K. P., J. All. Compd. 889, 161667 (2021).
2. Zhao Y., Peng R., Guo Y., Liu Z., Dong Y., Zhao Sh., Li Y., Dong G., Hu Y., Zhang J., Peng Y., Yang T., Tian B., Zhao Y., Zhou Z., Jiang Z., Luo Z, Lui M., Adv. Funct. Mater. 31, 2009376 (2021).
3. Borek S., Braun J., Min´ar J., Kutnyakhov D., Elmers H-J., Sch¨onhense G., Ebert H., J. Phys.: Condens. Matter. 28, 436004 (2016).
4. Gao H., Lin T., Yan Y., Fu K., Liu Y., Liu X., J. Phys. Chem. Chem. Phys. 22, 18284 (2020).
5. Venkataiah G., Gorige V., Swain A., Komatsu K., Itoh M., Taniyama T., Rapid Res. Lett. 11, 1700294 (2017).
6. Fechner M., Maznichenko I. V., Ostanin S., Ernst A., Henk J., Bruno P., Mertig I., Phys. Rev. B 78, 212406 (2008).
7. Li P., Chen A., Li D., Zhao Y., Zhang S., Yang L., Liu Y., Zhu M., Zhang H., Han X., Adv. Mater. 26, 4320 (2014).
8. Ortega N., Kumar A., Scott J. F., Katiyar R. S., J. Phys.: Condens. Matter. 27, 504002 (2015).
9. Spaldin N., Ramesh R., Nature Mater. 18, 203 (2019).
10. Kumari S., Pradhan D. K., Katiyar R. S., Kumar A., Metal Oxides. 29, 571 (2019).
11. Vaz C., Staub U., J. Phys.: Condens. Matter. 27, 500301 (2015).
12. Leksin P. V., Garif’yanov N. N., Garifullin I. A., Schumann J., Vinzelberg H., Kataev V., Klingeler R., Schmidt O.G., B¨uchner B., Appl. Phys. Lett. 97, 102505 (2010).
13. Kamashev A. A., Garif’yanov N. N., Validov A. A., Schumann J., Kataev V., B¨uchner B., Fominov Y. V., Garifullin I. A., Phys. Rev. B 100, 134511 (2019).
14. Kamashev A. A., Garif’yanov N. N., Validov A. A., Kataev V., Osin A. S., Fominov Y. V., Garifullin I. A., Phys. Rev. B 109, 144517 (2024).
15. Duan C. G., Jaswal S. S., Tsymbal E. Y., Phys. Rev. Lett. 97, 047201 (2006).
16. Valencia S., Crassous A., Bocher L., Garcia V., Moya X., Cherifi R. O., Deranlot C., Bouzehouane K., Fusil S., Zobelli A., Gloter A., Nature Mater. 10, 753 (2011).
17. Li W., Lee J., Demkov A. A., J. Appl. Phys. 131, 054101 (2022).
18. Qu Z., Huang C., Wu S., Wu F., Wang J., Deng K., Kan E., Phys. Rev. B 110, L161408 (2024).
19. Ochirkhuyag T., Kioussis N., Rhim S. H., Odkhuu D., 127, 24467 (2023).
20. Zhang Y., Wang Z., Wang Y., Luo C., Li J., Viehland D., J. Appl. Phys. 115, 084101 (2014).
21. Zhang Y., Li J., Dai B., Ni J., Ren Y., Tan S., Ceram. Int. 45, 7262 (2019).
22. Zhou Z., Howe B. M., Liu M., Nan T., Chen X., Mahalingam K., Sun N. X., Brown G. J., Sci. Rep. 5, 7740 (2015).
23. Okabayashi J., Miura Y., Taniyama T., Quantum Mater. 4, 21 (2019).
24. Zemp Y., Trassin M., Gradauskaite E., Gao B., Cheong S. W., Lottermoser T., Fiebig M., Weber M. C., Phys. Rev. B 109, 184417 (2024).
25. Xu S., Wang J., Chen P., Jin K., Ma C., Wu S., Guo E., Ge C., Wang C., Xu X., Yao H., Nat. Commun. 14, 2274 (2023).
26. Bagri A., Jana A., Panchal G., Chowdhury S., Raj R., Kumar M., Gupta M., Reddy V. R., Phase D. M., Choudhary R. J., ACS Appl. Mater. Interfaces 15, 18391 (2023).
27. Sahoo S., Mahapatra P. K., Choudhary R. N. P., Nandagoswami M. L., Kumar A., Mater. Res. Express 3, 065017 (2016).
28. Panchal G., Kojda D., Sahoo S., Bagri A., Singh Kunwar H., Bocklage L., Panchwanee A., Sathe V. G, Fritsch K., Habicht K., Choudhary R.J., Phys. Rev. B. 105, 224419 (2022).
29. Fang Z., Peng Y., Li H., Liu X., Zhai J., Crystals 15, 337 (2025).
30. Radaelli G., Petti D., Plekhanov E., Fina I., Torelli P., Salles B. R., Cantoni M., Rinaldi C., Guti´errez D., Panaccione G., Varela M., Nat. Commun. 3, 3404 (2014).
31. Kresse G., Furthm¨uller J., Comput. Mater. Sci. 6, 15 (1996).
32. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 77, 3865 (1996).
33. Bl¨ochl P. E., Phys. Rev. B 50, 17953 (1994).
34. Kresse G., Furthm¨uller J., Phys. Rev. B 54, 11169 (1996).
35. MedeA version 3.10; MedeA is a registered trademark of Materials Design, Inc., San Diego, USA.
36. Monkhorst H. J., Pack J. D., Phys. Rev. B 13, 5188 (1976).
37. Bl¨ochl P. E., Jepsen O., Andersen O. K., Phys. Rev. B 49, 16223 (1994).
38. Dudarev S. L., Botton G. A., Savrasov S. Y., Humphreys C. J., Sutton A. P., Phys. Rev. B 57, 1505 (1998).
39. Zali N. M., Mahmood C. S., Mohamad S. M., Foo C. T., Murshidi J. A., AIP Conf. Proc. 1584, 160 (2014).
Review
For citations:
Piyanzina I.I., Burganova R., Kamashev A.A., Mamin R.F. Magnetoelectric and spin-lattice effects in Fe/BaTiO3 heterostructure: non-collinear DFT calculations. Magnetic Resonance in Solids. 2025;27(2):25203 (13 pp.). https://doi.org/10.26907/mrsej-25203