Preview

Magnetic Resonance in Solids

Advanced search

The early stages of the graphene oxide thermal decomposition explored by X– and W–band ESR and traditional methods

https://doi.org/10.26907/mrsej-25304

Abstract

Thermal decomposition of graphene oxide (GO), often referred to as “thermal reduction” is broadly used to obtain so-called “thermally reduced GO”. At the same time, chemical and structural transformations, accompanying this process remain largely unexplored. In this work, using the combination of electron spin resonance spectroscopy, thermogravimetry, IR spectroscopy, and X–ray powder diffraction, we investigate the early stages of the GO thermal decomposition, which occur in the 80C–190C temperature range. Massive decomposition of the oxygen-containing groups begins at 130C. At this temperature we observe formation of C-H bonds and a sharp increase in the content of paramagnetic centers. The highest content of the radicals 1.3 × 1018 spin/g is registered in the samples, annealed at 150C. This is 3.5 times higher than that in original GO (3.8 × 1017 spin/g). At the same temperature we observe the loss of the interlayer registry in the material due to crumpling of the partially decomposed GO layers, and the C–H bonds are no longer observed. At 190C, the content of the paramagnetic centers sharply decreases down to 1.0 × 1017 spin/g, being 3.8 times smaller than that in original GO. This suggests that electrons are largely delocalized due to the enlargement and percolation of graphenic domains, and/or dangling bonds, formed at 130–150C largely recombine. Our new findings add critical details to understanding the fine chemical structure and chemistry of GO.

About the Authors

Sh. Galyaltdinov
Kazan Federal University
Russian Federation

Kazan 420008



G. V. Mamin
Kazan Federal University
Russian Federation

Kazan 420008



A. Khannanov
Kazan Federal University
Russian Federation

Kazan 420008



M. R. Gafurov
Kazan Federal University
Russian Federation

Kazan 420008



A. Kiiamov
Kazan Federal University
Russian Federation

Kazan 420008



D. A. Tayurskii
Kazan Federal University
Russian Federation

Kazan 420008



A. M. Dimiev
Kazan Federal University
Russian Federation

Kazan 420008



References

1. Dimiev A. M., Eigler S., Graphene Oxide: Fundamentals and Applications (Cambridge International Science Publishing, 2016).

2. Vishwakarma R. K., Narayanam P. K., Umamaheswari R., Polaki S. R., J. Water Process Eng 51, 103329 (2023).

3. Lin H., Li Y., Zhu J., J. Memb. Sci. 598, 117789 (2020).

4. Ma H. L., Zhang H. B., Hu Q. H., Li W. J., Jiang Z. G., Yu Z., Dasari A., ACS Appl. Mater. Interfaces 4, 1948 (2012).

5. Svalova A., Brusko V., Sultanova E., Kirsanova M., Khamidullin T., Vakhitov I., Dimiev A. M., Appl. Surf. Sci. 565, 150503 (2021).

6. Song P., Feng J. J., X S., Zhong, Huang S. S., Chen J. R., Wang A. J., RSC Adv. 5, 35551 (2015).

7. Galyaltdinov S., Safina G., Kiiamov A., Dimiev A., Langmuir 40, 17667 (2024).

8. de Assis L. K., Damasceno B. S., Carvalho M. N., Oliveira E. H. C., Ghislandi M. G., Environ. Technol. 41, 2360 (2020).

9. Yang J., Shojaei S., Shojaei S., Npj Clean Water 5, 1 (2022).

10. Jin Q. Q., Zhu X. H., Xing X. Y., Ren T. Z., Adsorpt. Sci. Technol. 30, 437 (2012).

11. Razaq A., Bibi F., Zheng X., Papadakis R., Hassan S., Jafri M., Materials 15, 1012 (2022).

12. Airić L., Sienkiewicz A., Gaál R., Jaćimović J., Vğju C., Magrez A., Forró L., Phys. Rev. B 86, 1 (2012).

13. Brusko V., Khannanov A., Rakhmatullin A., Dimiev A., Carbon 229, 119507 (2024).

14. Storm M. M., Johnsen R. E., Norby P., J. Solid State Chem. 240, 49 (2016).

15. Gutiérrez-Portocarrero S., Roquero P., Becerril-González M., Zúniga-Franco D., Diam. Relat. Mater. 92, 219 (2019).

16. Augustyniak-Jablokow M. A., Tadyszak K., Strzelczyk R., Fedaruk R., Carmieli R., Carbon 152, 98 (2019).

17. Kempi’nski M., Florczak P., Jurga S., Śliwińska-Bartkowiak M., Kempiński W., Appl. Phys. Lett. 111, 084102 (2017).

18. Mcallister M. J., Li J., Adamson D. H., Schniepp H. C., Abdala A. A., Liu J., Herrera-Alonso M., Milius D. L., Car R., Prud´homme R. K., Aksay I. A., Chem. Mater. 19, 4396 (2007).

19. Menezes I. R. S., Araújo N. R. S., Araújo B. C. R., Sakai T., Lago R. M., Sebastiao R. C. O., Thermochim. Acta 721, 084102 (2023).

20. Menezes I. R. S., Sakai T., Hattori Y., Kaneko K., Chem. Phys. Lett. 807, 140091 (2022).

21. Lipatov A., Guinel M. J.-F., Muratov D. S., Vanyushin V. O., Wilson P. M., Kolmakov A., Sinitskii A., Appl. Phys. Lett. 112, 053103 (2018).

22. Dimiev A. M., Shukhina K., Khannanov A., Carbon 166, 1 (2020).

23. Bertrand P., Electron Paramagnetic Resonance Spectroscopy (Springer, Berlin/Heidelberg, Germany, 2022).

24. Mims W. B., Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 283, 452 (1965).

25. Wang B., Fielding A. J., Dryfe R. A. W., J. Phys. Chem. C 123, 22556 (2019).

26. Panich A., Shames A., Sergeev N., Appl. Magn. Reson. 44, 107 (2013).

27. Jankovský O., Lojka M., Nováúek M., Luxa J., Sedmidubský D., Pumera M., Kosinac J., Sofer Z., Green Chem. 18, 6618 (2016).

28. Dimiev A. M., Polson T. A., Carbon 93, 544 (2015).


Review

For citations:


Galyaltdinov Sh., Mamin G.V., Khannanov A., Gafurov M.R., Kiiamov A., Tayurskii D.A., Dimiev A.M. The early stages of the graphene oxide thermal decomposition explored by X– and W–band ESR and traditional methods. Magnetic Resonance in Solids. 2025;27(3):25304 (12 pp.). https://doi.org/10.26907/mrsej-25304

Views: 77

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)