The early stages of the graphene oxide thermal decomposition explored by X– and W–band ESR and traditional methods
https://doi.org/10.26907/mrsej-25304
Abstract
Thermal decomposition of graphene oxide (GO), often referred to as “thermal reduction” is broadly used to obtain so-called “thermally reduced GO”. At the same time, chemical and structural transformations, accompanying this process remain largely unexplored. In this work, using the combination of electron spin resonance spectroscopy, thermogravimetry, IR spectroscopy, and X–ray powder diffraction, we investigate the early stages of the GO thermal decomposition, which occur in the 80◦C–190◦C temperature range. Massive decomposition of the oxygen-containing groups begins at ∼130◦C. At this temperature we observe formation of C-H bonds and a sharp increase in the content of paramagnetic centers. The highest content of the radicals 1.3 × 1018 spin/g is registered in the samples, annealed at 150◦C. This is 3.5 times higher than that in original GO (3.8 × 1017 spin/g). At the same temperature we observe the loss of the interlayer registry in the material due to crumpling of the partially decomposed GO layers, and the C–H bonds are no longer observed. At 190◦C, the content of the paramagnetic centers sharply decreases down to 1.0 × 1017 spin/g, being 3.8 times smaller than that in original GO. This suggests that electrons are largely delocalized due to the enlargement and percolation of graphenic domains, and/or dangling bonds, formed at 130–150◦C largely recombine. Our new findings add critical details to understanding the fine chemical structure and chemistry of GO.
About the Authors
Sh. GalyaltdinovRussian Federation
Kazan 420008
G. V. Mamin
Russian Federation
Kazan 420008
A. Khannanov
Russian Federation
Kazan 420008
M. R. Gafurov
Russian Federation
Kazan 420008
A. Kiiamov
Russian Federation
Kazan 420008
D. A. Tayurskii
Russian Federation
Kazan 420008
A. M. Dimiev
Russian Federation
Kazan 420008
References
1. Dimiev A. M., Eigler S., Graphene Oxide: Fundamentals and Applications (Cambridge International Science Publishing, 2016).
2. Vishwakarma R. K., Narayanam P. K., Umamaheswari R., Polaki S. R., J. Water Process Eng 51, 103329 (2023).
3. Lin H., Li Y., Zhu J., J. Memb. Sci. 598, 117789 (2020).
4. Ma H. L., Zhang H. B., Hu Q. H., Li W. J., Jiang Z. G., Yu Z., Dasari A., ACS Appl. Mater. Interfaces 4, 1948 (2012).
5. Svalova A., Brusko V., Sultanova E., Kirsanova M., Khamidullin T., Vakhitov I., Dimiev A. M., Appl. Surf. Sci. 565, 150503 (2021).
6. Song P., Feng J. J., X S., Zhong, Huang S. S., Chen J. R., Wang A. J., RSC Adv. 5, 35551 (2015).
7. Galyaltdinov S., Safina G., Kiiamov A., Dimiev A., Langmuir 40, 17667 (2024).
8. de Assis L. K., Damasceno B. S., Carvalho M. N., Oliveira E. H. C., Ghislandi M. G., Environ. Technol. 41, 2360 (2020).
9. Yang J., Shojaei S., Shojaei S., Npj Clean Water 5, 1 (2022).
10. Jin Q. Q., Zhu X. H., Xing X. Y., Ren T. Z., Adsorpt. Sci. Technol. 30, 437 (2012).
11. Razaq A., Bibi F., Zheng X., Papadakis R., Hassan S., Jafri M., Materials 15, 1012 (2022).
12. Airić L., Sienkiewicz A., Gaál R., Jaćimović J., Vğju C., Magrez A., Forró L., Phys. Rev. B 86, 1 (2012).
13. Brusko V., Khannanov A., Rakhmatullin A., Dimiev A., Carbon 229, 119507 (2024).
14. Storm M. M., Johnsen R. E., Norby P., J. Solid State Chem. 240, 49 (2016).
15. Gutiérrez-Portocarrero S., Roquero P., Becerril-González M., Zúniga-Franco D., Diam. Relat. Mater. 92, 219 (2019).
16. Augustyniak-Jablokow M. A., Tadyszak K., Strzelczyk R., Fedaruk R., Carmieli R., Carbon 152, 98 (2019).
17. Kempi’nski M., Florczak P., Jurga S., Śliwińska-Bartkowiak M., Kempiński W., Appl. Phys. Lett. 111, 084102 (2017).
18. Mcallister M. J., Li J., Adamson D. H., Schniepp H. C., Abdala A. A., Liu J., Herrera-Alonso M., Milius D. L., Car R., Prud´homme R. K., Aksay I. A., Chem. Mater. 19, 4396 (2007).
19. Menezes I. R. S., Araújo N. R. S., Araújo B. C. R., Sakai T., Lago R. M., Sebastiao R. C. O., Thermochim. Acta 721, 084102 (2023).
20. Menezes I. R. S., Sakai T., Hattori Y., Kaneko K., Chem. Phys. Lett. 807, 140091 (2022).
21. Lipatov A., Guinel M. J.-F., Muratov D. S., Vanyushin V. O., Wilson P. M., Kolmakov A., Sinitskii A., Appl. Phys. Lett. 112, 053103 (2018).
22. Dimiev A. M., Shukhina K., Khannanov A., Carbon 166, 1 (2020).
23. Bertrand P., Electron Paramagnetic Resonance Spectroscopy (Springer, Berlin/Heidelberg, Germany, 2022).
24. Mims W. B., Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 283, 452 (1965).
25. Wang B., Fielding A. J., Dryfe R. A. W., J. Phys. Chem. C 123, 22556 (2019).
26. Panich A., Shames A., Sergeev N., Appl. Magn. Reson. 44, 107 (2013).
27. Jankovský O., Lojka M., Nováúek M., Luxa J., Sedmidubský D., Pumera M., Kosinac J., Sofer Z., Green Chem. 18, 6618 (2016).
28. Dimiev A. M., Polson T. A., Carbon 93, 544 (2015).
Review
For citations:
Galyaltdinov Sh., Mamin G.V., Khannanov A., Gafurov M.R., Kiiamov A., Tayurskii D.A., Dimiev A.M. The early stages of the graphene oxide thermal decomposition explored by X– and W–band ESR and traditional methods. Magnetic Resonance in Solids. 2025;27(3):25304 (12 pp.). https://doi.org/10.26907/mrsej-25304
JATS XML

























