Application of complex NMR analysis to characterize pore space
https://doi.org/10.26907/mrsej-25307
Abstract
Using the example of a study on a solid natural porous material, such as the core of dolomite rock, the effectiveness of three complementary NMR techniques is demonstrated. These techniques allow for the determination of the characteristics of the porous structure with sufficient accuracy, including the pore size distribution. Based on the combination of classical NMR relaxation and DDIF techniques, a method has been proposed for determining the surface relaxation parameter of the studied object without the need for additional physico-chemical research or reference to literature data.
Keywords
About the Authors
D. S. IvanovRussian Federation
Kazan 420008
D. L. Melnikova
Russian Federation
Kazan 420008
A. S. Alexandrov
Russian Federation
Kazan 420008
V. D. Skirda
Russian Federation
Kazan 420008
References
1. Danielson R., Sutherland P., Methods of soil analysis: part 1 physical and mineralogical methods 5, 443 (1986).
2. Qiu J., Khalloufi S., Martynenko A., Van Dalen G., Schutyser M., Almeida-Rivera C., Drying Technology 33, 1681 (2015).
3. Dullien F. A., Batra V., Industrial & Engineering Chemistry 62, 25 (1970).
4. Rouquerol J., Avnir D., Fairbridge C., Everett D., Haynes J., Pernicone N., Ramsay J., Pure and Applied Chemistry 66, 1739 (1994).
5. Galukhin A., Osin Y., Rodionov A., Mamin G., Gafurov M., Orlinskii S., Magnetic Resonance in Solids 20, art. 18203 (2018).
6. Anovitz L. M., Cole D. R., Reviews in Mineralogy and Geochemistry 80, 61 (2015).
7. Barrie P. J., Annual Reports on NMR Spectroscopy 41, 265 (2000).
8. Klochkov A., Tagirov M., Low Temperature Physics 41, 50 (2015).
9. Lu Y., Liu K., Wang Y., Applied Sciences 11, 8027 (2021).
10. Gazizulin R., Klochkov A., Kuzmin V., Safiullin K., Tagirov M., Yudin A., Magnetic Resonance in Solids 11, 33 (2009).
11. Gizatullin B., Savinkov A., Shipunov T., Melnikova D., Doroginitzky M., Skirda V., Magnetic Resonance in Solids 20, art. 18102 (2018).
12. Kenyon W., The Log Analyst 38, 21 (1997).
13. Kleinberg R. L., Horsfield M. A., Journal of Magnetic Resonance 88, 9 (1990).
14. Sigal R. F., SPE Journal 20, 824 (2015).
15. Morales-Chávez S., Valdez-Grijalva M., Díaz-Viera M., Lucas-Oliveira E., Bonagamba T., Journal of Magnetic Resonance 379, 107922 (2025).
16. Ghomeshi S., Kryuchkov S., Kantzas A., Journal of Magnetic Resonance 289, 79 (2018).
17. Stepišnik J., Ardelean I., Mohorič A., Journal of Magnetic Resonance 328, 106981 (2021).
18. Mutina A. R., Skirda V. D., Journal of Magnetic Resonance 188, 122 (2007).
19. Hürlimann M. D., Journal of Magnetic Resonance 148, 367 (2001).
20. Hürlimann M. D., Venkataramanan L., Journal of Magnetic Resonance 157, 31 (2002).
21. Dullien F. A., Porous media: fluid transport and pore structure (Academic press, 2012).
22. Zhao P., Wang L., Xu C., Fu J., Shi Y., Mao Z., Xiao D., Marine and Petroleum Geology 111, 66 (2020).
23. Rogozin A., Ignateva T., Churkov A., Exposition Oil Gas 6, 62 (2021), [in Russian].
24. Wampler J., Rai C., Abdelghany O., in SEG Technical Program Expanded Abstracts, Vol. 29 (Society of Exploration Geophysicists, 2010) pp. 2649–2653.
25. Wang H., Ni W., Yuan K., Nie Y., Li L., Bulletin of Engineering Geology and the Environment 82, 180 (2023).
26. Peesu R. R., Voleti D. K., Dutta A., Vanam P. R., Reddicharla N., in Abu Dhabi International Petroleum Exhibition and Conference (SPE, 2022) p. D012S145R004.
27. Fajt M., Machowski G., Puzio B., Krzyżak A. T., Scientific Reports 15, 36688 (2025).
28. Strange J. H., Rahman M., Smith E., Physical Review Letters 71, 3589 (1993).
29. Mitchell J., Webber J. B. W., Strange J. H., Physics Reports 461, 1 (2008).
30. Petrov O., Furó I., Microporous and Mesoporous Materials 138, 221 (2011).
31. Rottreau T. J., Parlett C. M., Lee A. F., Evans R., Microporous and Mesoporous Materials 264, 265 (2018).
32. Rottreau T. J., Parlett C. M., Lee A. F., Evans R., Microporous and Mesoporous Materials 274, 198 (2019).
33. Terenzi C., Sederman A. J., Mantle M. D., Gladden L. F., Journal of Magnetic Resonance 299, 101 (2019).
34. Song Y.-Q., Concepts in Magnetic Resonance Part A: An Educational Journal 18, 97 (2003).
35. Foley I., Farooqui S., Kleinberg R., Journal of Magnetic Resonance 123, 95 (1996).
36. Hürlimann M. D., Journal of Magnetic Resonance 131, 232 (1998).
37. Al-Jawad S. N. A., Ahmed M. A., Saleh A. H., Journal of Petroleum Exploration and Production Technology 10, 3157 (2020).
38. Doroginitskii M., Ivanov A., “Spectrum of spin-spin relaxation times,” (2024), certificate no. 2024617332 of the Russian Federation; Kazan Federal University.
39. Carr H. Y., Purcell E. M., Physical Review 94, 630 (1954).
40. Strange J., Betteridge L., Mallett M., in Magnetic Resonance in Colloid and Interface Science (Springer, 2002) pp. 155–169.
41. Cutler D., Powles J., Proceedings of the Physical Society 82, 1 (1963).
42. Ivanov D., Barskaya E., Skirda V., Magnetic Resonance in Solids 21, art. 19201 (2019).
43. Song Y.-Q., Ryu S., Sen P. N., Nature 406, 178 (2000).
44. Stejskal E., The Journal of Chemical Physics 43, 3597 (1965).
45. Mohnke O., Klitzsch N., Vadose Zone Journal 9, 846 (2010).
46. Daigle H., Johnson A., Thomas B., Geophysics 79, D425 (2014).
47. Petrov O. V., Furó I., Progress in Nuclear Magnetic Resonance Spectroscopy 54, 97 (2009).
Review
For citations:
Ivanov D.S., Melnikova D.L., Alexandrov A.S., Skirda V.D. Application of complex NMR analysis to characterize pore space. Magnetic Resonance in Solids. 2025;27(3):25307 (13 pp.). https://doi.org/10.26907/mrsej-25307
JATS XML

























