NMR experiment control system with an interval programmable generator
https://doi.org/10.26907/mrsej-25310
Abstract
Exceptionally high demands on the time control accuracy and the experiment flexibility are imposed by modern nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI). A critical component of NMR equipment is a specialized device responsible for synchronizing and controlling all nodes and devices during the experiment. In this paper, a device control system with interval programmable generator (programmator) of arbitrary pulse sequences implemented on programmable logic integrated circuits (FPGAs) is proposed. The designed system architecture provides simultaneous control of up to 245 external devices in mode both asynchronous and synchronous with the pulse sequence via special instruction words. A universal instruction format used for both internal and external devices provides a simple way to connect any new external device to the control system. The internal instructions set, which includes intervals, nested loops and macros allow to develop and implement the highest complexity pulse sequences in NMR experiments. The duration of the interval set by a single instruction can take values from 20 ns to 0.334 seconds. For any fragments of the pulse sequence, it is possible to form cycles with up to 216 repetitions, including nested (cycle within cycle) cycles with a nest depth of 16. Thus, usage a memory for only 2048 instruction words allows to reach the total duration of the generated sequence 1080 s (with a 20 ns resolution).
Keywords
About the Authors
A. S. AlexandrovRussian Federation
Kazan 420008
D. L. Melnikova
Russian Federation
Kazan 420008
D. S. Ivanov
Russian Federation
Kazan 420008
V. D. Skirda
Russian Federation
Kazan 420008
References
1. PulseBlaster - Programmable Pulse and Delay Generator PCIe Board SP46, Owner’s Manual, SpinCore Technologies Inc., Gainesville, FL 32653, USA (2025).
2. Takeda K., Rev. of Sci. Instr. 78, 033103 (2007).
3. Takeda K., J. of Magn. Reson. 192, 218 (2008).
4. Hennig J., Welz A. M., Schultz G., Korvink J., Liu Z., Speck O., Zaitsev M., Magnetic Resonance Materials in Physics, Biology and Medicine 21, 5 (2008).
5. Monmasson E., Cirstea M. N., IEEE Trans. on Indust. Electr. 54, 1824 (2007).
6. Kuon I., Tessier R., Rose J., Foundations and Trends in Electr. Des. Autom. 2, 135 (2008).
7. Tayler M. C., Bodenstedt S., J. of Magn. Reson. 362, 107665 (2024).
8. Harris M., Harris L., Digital Design and Computer Architecture (Elsevier, 2007).
9. Sun L., Savory J. J., Warncke K., Concepts in Magn. Reson. Part B 43, 100 (2013).
10. Othman M., Abdullah N., Rusli N., in 2010 IEEE Symp. on Indust. Electr. and Appl. (ISIEA) (2010) pp. 623–628.
11. Li L., Wyrwicz A. M., J. of Magn. Reson. 255, 51 (2015).
12. Gebhardt P., Wehner J., Weissler B., Botnar R., Marsden P., Schulz V., Phys. in Med. and Biology 61, 3500 (2016).
13. Law D., Dove D., D’Ambrosia J., Hajduczenia M., Laubach M., Carlson S., IEEE Commun. Magazine 51, 88 (2013).
14. Abragam A., The principles of nuclear magnetism (Oxford university press, 1961).
15. Slichter C. P., Principles of magnetic resonance (Springer Science & Business Media, 2013).
Review
For citations:
Alexandrov A.S., Melnikova D.L., Ivanov D.S., Skirda V.D. NMR experiment control system with an interval programmable generator. Magnetic Resonance in Solids. 2025;27(3):25310 (13 pp.). https://doi.org/10.26907/mrsej-25310
JATS XML

























