Electron paramagnetic resonance study on phosphosilicate glasses
https://doi.org/10.26907/mrsej-19102
Abstract
The phospho-silicate glass containing 10 mol% CrF2 was studied by electron paramagnetic resonance (EPR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) equipped with electron diffraction apparatus which is specified for measuring the electron diffraction pattern (EDP). EPR spectroscopy offers information about oxidation states of Cr ions and their coordination symmetry in the vitreous network. The EPR spectra of Cr3+ of glass containing 10 mol% CrF2 have revealed two essential resonance signals with effective g values at geff = 4.93 and geff = 2.14. Presence of the two resonances is considered as a good evidence for the presence of trivalent chromium ions of octahedral coordination in glass containing 10 mol.% CrF2. X-ray and electron diffraction measurements on sample containing 10 mol% CrF2 have confirmed that there are some crystalline phases distributed in the main glass network. TEM micrograph has revealed a heavy accumulation of crystalline species. The glass which was exposed to irradiation process has showed different EPR signal when it compared with that of unirradiated sample.
About the Authors
G. El-DamrawiEgypt
Faculty of Science, 35516 Mansoura
M. Abou Elzahab
Egypt
Faculty of Science, 35516 Mansoura
A. Dowadair
Egypt
Faculty of Science, 35516 Mansoura
A. Hosny
Egypt
Gamasa
References
1. Silva V.A.J., Andrade P.L., Silva M.P.C., Bustamante D.A., De Los Santos Valladares L., Albino Aguiar J. J. Magn. Magn. Mater. 343, 138 (2013)
2. Eniu D., Gruian C., Vanea E., Patcas L., Simon V. J. Mol. Struct. 1084, 23 (2015)
3. Liu Z.L., Wang H.B., Lu Q.H., Du G.H., Peng L., Du Y.Q., Zhang S.M., Yao K.L. J. Magn. Magn. Mater. 283, 258 (2004)
4. Olivier M., Strom-Olsen J.O., Altounian Z. Phys. Rev. B 35, 333 (1987)
5. El Damrawi G., Gharghar F. J. Adv. Phys. 13, 4486 (2017)
6. Babic B., Kajzar F., Pareti G. J. Phys. Chem. Solids 41, 1303 (1980)
7. Elisa M., Cristiana E., Vasiliu M., Bulinski V., Kuncser D., Predoi G., Filoti A., Meghea N., Giurginca C. Opt. Quantum Electron. 39, 523 (2007)
8. Glazkov V.I., Golant K.M., Zavorotny Yu.S., Lebedev V.F., Rybaltovskii A.O. Glass Phys. Chem. 28(4), 201 (2002)
9. Betancourt I., Vazquez F. J. Non-Cryst. Solids 353, 893 (2007)
10. Fernández-Martínez A., Gorria P., Cuello G.J., Santos J.D., Pérez M.J. J. Non-Cryst. Solids 353, 855 (2007)
11. Andronenko S.I., Andronenko R.R., Vasil’ev A.V., Zagrebel’nyi O.A. Glass Phys. Chem. 30(3), 230 (2004)
12. El Damrawi G., Hassan A.K., Abdelghany M., Baghdady H. J. Adv. Phys. 13, 4868 (2017)
13. Aktas B., Yalcin S., Dogru K., Uzunoglu Z., Yilmaz D. Radiat. Phys. Chem. 156, 144 (2019)
14. Touboul M., Bourée F. J. Mater. Chem. 3, 623 (1993)
15. El-Damrawi G., Hassan A.K., Shahboub A. Magn. Reson. Solids 20, 18202 (2018)
16. Landry R.J., Fournnier J.T., Young C.G. J. Chem. Phys. 46, 1285 (1967)
17. Fuxi G., He D., Huiming L. J. Non-Cryst. Solids 52, 135 (1982)
18. Murali A., Rao J.L. J. Phys.: Condens. Matter 11, 1321 (1999)
19. Weil J.A., Bolton J.R. Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, Second Edition, John Wiley & Sons, Inc., New York (2007)
20. Fournier J.T., Landry R.J., Bartram R.H. J. Chem. Phys. 55, 2522 (1971)
21. Gonella F., Caccavale F., Bogomolova L.D., Jachkin V.A. Appl. Phys. A 68, 539 (1999)
22. Latelli H. Procedia – Social and Behavioral Sciences 195, 1746 (2015)
23. Vorotynov A.M., Rudenko V.V., Ovchinnikov S.G., Molokeev M.S. JETP 127(6) (2018), to be published [ ZhETF 154, 1160 (2018), in Russian ]
Review
For citations:
El-Damrawi G., Abou Elzahab M., Dowadair A., Hosny A. Electron paramagnetic resonance study on phosphosilicate glasses. Magnetic Resonance in Solids. 2019;21(1):19102 (6 pp.). https://doi.org/10.26907/mrsej-19102