Preview

Magnetic Resonance in Solids

Advanced search

Size effect for asphaltene particles in the resin by NMR

https://doi.org/10.26907/mrsej-19201

Abstract

The resin-asphaltene model systems with different sizes of asphaltenes are studied by nuclear magnetic resonance (NMR) using the solid-echo sequence. For systems with particle sizes of asphaltenes greater than 50 µm, the form of relaxation attenuation consists of two components, one of which is characterized by a typical asphaltene relaxation time of about 20 µs. In this case, the Gaussian form describes the relaxation attenuation of this component, which is typical for the NMR signal in disordered solids. At the same time, it is found that the share of the solid component in the NMR signal decreases with decreasing particle size of asphaltenes. The signal drops to zero when the size of asphaltenes particles reaches 10 microns. Based on the estimates of the rotational motion correlation time for an asphaltene particle in a dispersion medium (resin) with a known viscosity value, the influence of two factors is discussed: the difference in the values of macro- and microviscosity of the resin, as well as the possibility of partial dissolution of asphaltenes particles in the resin. The results of repeated measurements for a long time indicate the existence of a reverse process in the system, leading to the aggregation of asphaltene particles.

About the Authors

D. S. Ivanov
Kazan Federal University
Russian Federation

Kremlevskaya 18, Kazan 420008



E. E. Barskaya
Arbuzov Institute of Organic and Physical Chemistry
Russian Federation

Kazan 420029



V. D. Skirda
Kazan Federal University
Russian Federation

Kremlevskaya 18, Kazan 420008



References

1. Unger F.G., Andreeva L.N., Krasnogorskaya N.N. Fundamental Aspects of Oil Chemistry, Nauka, Novosibirsk (1995) (in Russian)

2. Akbarzadeh K., Dhillon A., Svrcek W.Y., Yarranton H.W. Energy & Fuels 18, 1434 (2004)

3. Mozaffari S., Tchoukov P., Atias J., Czarnecki J., Nazemifard N. Energy & Fuels 29, 5595 (2015)

4. Franco C.A., Nassar N.N., Montoya T., Ruíz M.A., Cortés F.B. Energy & Fuels 29, 1610 (2015)

5. Headen T.F., Boek E.S., Jackson G., Totton T.S., Mü ller E.A. Energy & Fuels 31, 1108 (2017)

6. Painter P., Veytsman B., Youtcheff J. Energy & Fuels 29, 2120 (2015)

7. Spiecker P.M., Gawrys K.L., Trail C.B., Kilpatrick P.K. Colloids and Surfaces A: Physicochemical and Engineering Aspects 220, 9 (2003)

8. Chilingarian G.V., Yen T.F. Bitumens Asphalts and Tar Sands, Elsevier Scientific Pub. Co., Netherlands (1978)

9. Dickie J.P., Yen T.F. Anal. Chem. 39, 1847 (1967)

10. MacDonald B.A., Miadonye A. Journal of Chemical & Engineering Data 62, 924 (2017)

11. ASTM D6560-00. Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products, Annual Book of ASTM Standards, West Conshohocken, PA ASTM International (2005)

12. Sheu E.Y., Liang K.S., Sinha S.K., Overfield R.E. Journal of Colloid and Interface Science 153, 399 (1992)

13. Soorghali F., Zolghadr A., Ayatollahi S. Energy & Fuels 28, 2415 (2014)

14. Akbarzadeh K., Hammami A., Kharrat A., Zhang D., Allenson S., Creek J., Mullins O.C. Oilfield Review 19, 22 (2007)

15. Speight J.G., Moschopedis S.E. Am. Chem. Soc. 24, 1 (1979)

16. Korb J.P. Prog. Nucl. Magn. Reson. Spectrosc. 104, 12 (2018)

17. Martyanov O.N., Larichev Y.V., Morozov E.V., Trukhan S.N., Kazarian S.G. Russ. Chem. Rev. 86, 999 (2017)

18. Abragam A. The Principles of Nuclear Magnetism, Oxford University Press, Oxford (1961)

19. Prunelet A., Fleury M., Cohen-Addad J.P. Comptes Rendus Chimie 7, 283 (2004)

20. Espinat D., Gaulier F., Norrant F., Barbier J., Guichard B., Rivallan M., Levitz P. Energy & Fuels 31, 7382 (2017)

21. Shkalikov N.V., Skirda V.D. Uchenye Zapiski Kazanskogo Universiteta - Seriya Fiziko-Matematicheskie Nauki 151, 41 (2009)

22. Gentile L., Filippelli L., Rossi C.O., Baldino N., Ranieri G.A. Molecular Crystals and Liquid Crystals 558, 54 (2012)

23. Kalabin G.A., Kanitskaya L.V., Kushnarev D.F. Quantitative NMR Spectroscopy of Natural Organic Raw Materials and Products of Its Processing, Khimiya, Moscow (2000) (in Russian)

24. White D.R., Constantinou C., Martin R.J. The British Journal of Radiology 59, 787 (1986)

25. Shkalikov N.B. Investigation of Heavy Oils and Their Components by NMR. (PhD thesis), Kazan Federal University, Kazan (2010) (in Russian)

26. Evdokimov I.N., Eliseev N.Y., Akhmetov B.R. Fuel 82, 817 (2003)

27. Shkalikov N. V., Skirda V.D., Arkhipov R.V. Magn. Reson. Solids 8, 38 (2006)

28. Patent 2333476 RF, G01N 24/08 Method for Determination of Paraffin and Asphaltene Content in Oil, Nikolin I.V., Safonov S.S., Skirda V.D., Shkalikov N.V., the applicant Schlumberger technology B. V. (2006) (in Russian)

29. Patent 2383884 RF, G01N 24/08 Method for Determining the Content of Liquid-Phase and Solid-State Components in a Mixture of Hydrocarbons, Nikolin I.V., Shkalikov N.V., Skirda V.D., the applicant Schlumberger technology B.V. (2009) (in Russian)

30. Patent 2423686 RF, G01N 24/08 Method for Determining the Molecular Mass Distribution of Paraffins in a Hydrocarbon Mixture Using the Nuclear Magnetic Resonance Method, Shkalikov N.V., Skirda V.D., the applicant and the priority Kazan Federal University, (2009) (in Russian)

31. Farrar T.С. Introduction to Pulse NMR Spectroscopy, Farragut Press, Kingston Pike Farragut (1989)

32. Azami K., Yokono T., Sanada Y., Uemura S. Carbon 27, 177 (1989)

33. Lichtenstein G.I. Method of Spin Labels in Molecular Biology, Nauka, Moscow (1976) (in Russian)


Review

For citations:


Ivanov D.S., Barskaya E.E., Skirda V.D. Size effect for asphaltene particles in the resin by NMR. Magnetic Resonance in Solids. 2019;21(2):19201 (10 pp.). https://doi.org/10.26907/mrsej-19201

Views: 33


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)