The processes of aggregation and dissolution in model systems resin-asphaltene by NMR
https://doi.org/10.26907/mrsej-19202
Abstract
The resin-asphaltene model samples are studied by nuclear magnetic resonance (NMR). According to the differences in spin-spin relaxation times, we are able to distinguish two components of the resin in the mixture. The first component with slower relaxation rate corresponds to the resin in bulk. The second component with the much higher relaxation rate conforms to the resin interacting with the asphaltene particles. The dependence of the ratio between the contributions of these functions on the particle size of asphaltenes is found. It is shown that the fraction of resin molecules interacting with asphaltenes is described by the power dependence on the particle size in terms of one particle. In this case, the proportionality to the volume is given by the value of the exponent (0.9) that is closer to unity, while this exponent is 1.33 for the particle surface. This result is not consistent with the conventional simple model of an asphalt particle surrounded by a solvate resin layer. A hypothesis is formulated about the partial dissolution of asphaltene molecules in the resin is formulated, which is also confirmed by the dependence in the NMR signal of the fraction of the solid component on the particle size of asphaltenes. It is shown that the kinetic dependences of the fraction of the solid component, as well as the fraction of the resin molecules in the state of interaction with asphaltenes, reflect in general the opposite processes, although they are characterized by a close time value of 20 days.
About the Authors
D. S. IvanovRussian Federation
Kremlevskaya 18, Kazan 420008
E. E. Barskaya
Russian Federation
Kazan 420029
V. D. Skirda
Russian Federation
Kazan 420029
References
1. Yen T.F., Erdman J.G., Pollack S.S. Anal. Chem. 33, 1587 (1961)
2. Sergienko S.R., Taimova B.A., Talalaev E.I. High-Molecular-Mass Nonhydrocarbon Petroleum Compounds, Nauka, Moscow (1979) (in Russian)
3. Speight J.G. Handbook of Petroleum Product Analysis, John Wiley & Sons, New-York (2015)
4. Yen T.F., Wu W.H., Chilingar G.V. Energy Sources 7, 275 (1984)
5. Makhonin G.M., Petrov A.A. Chemistry and Technology of Fuels and Oils 11, 942 (1975)
6. Merino-Garcia D., Andersen S.I. Langmuir 20, 4559 (2004)
7. Alvarez-Ramirez F., Ramirez-Jaramillo E., Ruiz-Morales Y. Energy & Fuels 20, 195 (2006)
8. Suryanarayana I., Rao K.V., Duttachaudhury S.R., Subrahmanyam B., Saikia B.K. Fuel 69, 1546 (1990)
9. Murgich J., Rodríguez J., Aray Y. Energy & Fuels 10 68 (1996)
10. Anisimov M.A., Ganeeva Y.M., Gorodetskii E.E., Deshabo V.A., Kosov V.I., Kuryakov V.N., Yudin I.K. Energy and Fuels 28, 6200 (2014)
11. Ganeeva Y.M., Yusupova T.Y., Romanov G.V. Russian Chemical Reviews 80, 993 (2011)
12. Gafurov M.R., Gracheva I.N., Mamin G.V., Ganeeva Y.M., Yusupova T.N., Orlinskii S.B. Russian Journal of General Chemistry 88, 2374 (2018)
13. Spiecker P.M., Gawrys K.L., Trail C.B., Kilpatrick P.K. Colloids and Surfaces A: Physicochem. Eng. Aspects 220, 9 (2003)
14. Prunelet A., Fleury M., Cohen-Addad J.P. Comptes Rendus Chimie 7, 283 (2004)
15. Gunther H. NMR Spectroscopy: an Introduction, John Wiley & Sons, New-York (1980)
16. Farrar T.С. Introduction to Pulse NMR Spectroscopy, Farragut Press, Kingston Pike Farragut (1989)
17. Abragam A. The Principles of Nuclear Magnetism, Oxford University Press, Oxford (1961)
18. Ivanov D.S., Barskaya E.E., Skirda V.D. Magn. Reson. Solids 21, 19201 (2019)
19. Barbosa L.L., Kock F.V., Almeida V.M., Menezes S.M., Castro E.V. Fuel Processing Technology 138, 202 (2015)
20. Ren Y., Liao Z., Sun J., Jiang B., Wang J., Yang Y., Wu Q. Chemical Engineering Journal 357, 761 (2018)
21. Murzakov R.M., Sabanenkov S.A., Syunyaev Z.I. Chemistry and Technology of Fuels and Oils 16, 674 (1980)
22. Chaala A., Benallal B., Hachelef S. The Canadian Journal of Chemical Engineering 72, 1036 (1994)
23. Shkalikov N.V., Skirda V.D. Uchenye Zapiski Kazanskogo Universiteta - Seriya Fiziko-Matematicheskie Nauki 151, 41 (2009) (in Russian)
24. Jestin J., Barré L. Journal of Dispersion Science and Technology 25, 341 (2004)
25. Macchioni A., Ciancaleoni G., Zuccaccia C., Zuccaccia D. Chemical Society Reviews 37, 479 (2008)
26. Riek R., Fiaux J., Bertelsen E.B., Horwich A.L., Wüthrich K. Journal of the American Chemical Society 124, 12144 (2002)
Review
For citations:
Ivanov D.S., Barskaya E.E., Skirda V.D. The processes of aggregation and dissolution in model systems resin-asphaltene by NMR. Magnetic Resonance in Solids. 2019;21(2):19202 (10 pp.). https://doi.org/10.26907/mrsej-19202