Preview

Magnetic Resonance in Solids

Advanced search

Resonant magnetoresistance in double-barrier antiferromagnetic tunnel junction

https://doi.org/10.26907/mrsej-19310

Abstract

Resonant tunneling is studied theoretically for the asymmetric double-barrier antiferromagnetic tunnel junction (DAMTJ) with a bias voltage is applied. In this nanostructure, the direction of magnetization of the middle ferromagnetic layer is parallel (antiparallel) to the direction of magnetization of the top layer and antiparallel (parallel) to the direction of magnetization of the bottom ferromagnetic layer. Analytical expression for the transmission coefficient of the double-barrier nanostructure is received, which is expressed through single-barrier transmission coefficients taking into account the voltage drop on each barrier and spin degrees of freedom of the electron conductivity. The theoretical model of spin-polarized conductance and tunnel magnetoresistance in asymmetric DAMTJ in the quasi-classical approximation is developed. The dependences of the transmission coefficient and tunnel magnetoresistance on the applied voltage under resonant conditions are shown.

About the Author

N. Kh. Useinov
Institute of Physics, Kazan Federal University
Russian Federation

Kremlevskaya 18, Kazan 420008



References

1. Kronmuller H., Parkin S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, Vol. 5: Spintronics and Magnetoelectronics, John Wiley & Sons (2007)

2. Xu Y., Awschalom D.D., Nitta J. (eds.) Handbook of Spintronics, Springer Science + Business Media Dordrecht (2016)

3. Tao B.S., Yang H.X., Zuo Y.L., Devaux X., Lengaigne G., Hehn M., Lacour D., Andrieu S., Chshiev M., Hauet T., Montaigne F., Mangin S., Han X.F., Lu Y. Phys. Rev. Lett. 115, 157204 (2015)

4. Yang H., Yang S.-H., Parkin S.S.P. Nano Letters 8, 340 (2008)

5. Sheng L., Chen Y., Teng H.Y., Ting C.S. Phys. Rev. B 59, 480 (1999)

6. Wang Y., Lu Z.-Y., Zhang X.-G., Han X.F. Phys. Rev. Lett. 97, 087210 (2006)

7. Breit G., Wigner E. Phys. Rev. 49, 519 (1936)

8. Tsu R., Esaki L. Appl. Phys. Lett. 22, 562 (1973)

9. Chang L.L., Esaki L., Tsu R. Appl. Phys. Lett. 24, 593 (1974)

10. Martinek J., Barna s J., Fert A., Maekawa S., Schon G. J. Appl. Phys. 93, 8265 (2003)

11. Miyamoto K., Yamamoto H. J. Appl. Phys. 84, 311 (1998)

12. Wilczynski M., Barnas J. JMMM 221, 373 (2000)

13. Tagirov L.R., Vodopyanov B.P., Efetov K.B. Phys. Rev. B 63, 104428 (2001)

14. Useinov N.Kh. Phys. Solid State 55, 659 (2013)

15. Landau L.D., Lifshitz E.M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed., Elsevier Butterworth-Heinemann (2005)

16. Burstein E., Lundqvist S. (eds.) Tunneling Phenomena in Solids, Plenum, New York (1969)

17. Mazierska J., Ledenyov D., Jacob M., Krupka J. Supercond. Sci. Technol. 18, 18 (2005)

18. Faure-Vincent J., Tiusan C., Bellouard C., Popova E., Hehn M., Montaigne F., Schuhl A. Phys. Rev. Lett. 89, 107206 (2002)

19. Buttiker M. IBM J. Res. Dev. 32, 63 (1988)

20. Useinov N.Kh., Petukhov D.A., Tagirov L.R. JMMM 373, 27 (2015)

21. Colis S., Gieres G., Bar L., Wecker J. Appl. Phys. Lett. 83, 948 (2003)

22. Zeng Z.M., Wang Y., Han X.F., Zhan W.S., Zhang Z. Eur. Phys. J. B 52, 205 (2006)


Review

For citations:


Useinov N.Kh. Resonant magnetoresistance in double-barrier antiferromagnetic tunnel junction. Magnetic Resonance in Solids. 2019;21(3):19310 (13 pp.). https://doi.org/10.26907/mrsej-19310

Views: 33


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2072-5981 (Online)