Resonant magnetoresistance in double-barrier antiferromagnetic tunnel junction
https://doi.org/10.26907/mrsej-19310
Abstract
Resonant tunneling is studied theoretically for the asymmetric double-barrier antiferromagnetic tunnel junction (DAMTJ) with a bias voltage is applied. In this nanostructure, the direction of magnetization of the middle ferromagnetic layer is parallel (antiparallel) to the direction of magnetization of the top layer and antiparallel (parallel) to the direction of magnetization of the bottom ferromagnetic layer. Analytical expression for the transmission coefficient of the double-barrier nanostructure is received, which is expressed through single-barrier transmission coefficients taking into account the voltage drop on each barrier and spin degrees of freedom of the electron conductivity. The theoretical model of spin-polarized conductance and tunnel magnetoresistance in asymmetric DAMTJ in the quasi-classical approximation is developed. The dependences of the transmission coefficient and tunnel magnetoresistance on the applied voltage under resonant conditions are shown.
Keywords
About the Author
N. Kh. UseinovRussian Federation
Kremlevskaya 18, Kazan 420008
References
1. Kronmuller H., Parkin S. (eds.) Handbook of Magnetism and Advanced Magnetic Materials, Vol. 5: Spintronics and Magnetoelectronics, John Wiley & Sons (2007)
2. Xu Y., Awschalom D.D., Nitta J. (eds.) Handbook of Spintronics, Springer Science + Business Media Dordrecht (2016)
3. Tao B.S., Yang H.X., Zuo Y.L., Devaux X., Lengaigne G., Hehn M., Lacour D., Andrieu S., Chshiev M., Hauet T., Montaigne F., Mangin S., Han X.F., Lu Y. Phys. Rev. Lett. 115, 157204 (2015)
4. Yang H., Yang S.-H., Parkin S.S.P. Nano Letters 8, 340 (2008)
5. Sheng L., Chen Y., Teng H.Y., Ting C.S. Phys. Rev. B 59, 480 (1999)
6. Wang Y., Lu Z.-Y., Zhang X.-G., Han X.F. Phys. Rev. Lett. 97, 087210 (2006)
7. Breit G., Wigner E. Phys. Rev. 49, 519 (1936)
8. Tsu R., Esaki L. Appl. Phys. Lett. 22, 562 (1973)
9. Chang L.L., Esaki L., Tsu R. Appl. Phys. Lett. 24, 593 (1974)
10. Martinek J., Barna s J., Fert A., Maekawa S., Schon G. J. Appl. Phys. 93, 8265 (2003)
11. Miyamoto K., Yamamoto H. J. Appl. Phys. 84, 311 (1998)
12. Wilczynski M., Barnas J. JMMM 221, 373 (2000)
13. Tagirov L.R., Vodopyanov B.P., Efetov K.B. Phys. Rev. B 63, 104428 (2001)
14. Useinov N.Kh. Phys. Solid State 55, 659 (2013)
15. Landau L.D., Lifshitz E.M. Quantum Mechanics: Non-Relativistic Theory, 3rd ed., Elsevier Butterworth-Heinemann (2005)
16. Burstein E., Lundqvist S. (eds.) Tunneling Phenomena in Solids, Plenum, New York (1969)
17. Mazierska J., Ledenyov D., Jacob M., Krupka J. Supercond. Sci. Technol. 18, 18 (2005)
18. Faure-Vincent J., Tiusan C., Bellouard C., Popova E., Hehn M., Montaigne F., Schuhl A. Phys. Rev. Lett. 89, 107206 (2002)
19. Buttiker M. IBM J. Res. Dev. 32, 63 (1988)
20. Useinov N.Kh., Petukhov D.A., Tagirov L.R. JMMM 373, 27 (2015)
21. Colis S., Gieres G., Bar L., Wecker J. Appl. Phys. Lett. 83, 948 (2003)
22. Zeng Z.M., Wang Y., Han X.F., Zhan W.S., Zhang Z. Eur. Phys. J. B 52, 205 (2006)
Review
For citations:
Useinov N.Kh. Resonant magnetoresistance in double-barrier antiferromagnetic tunnel junction. Magnetic Resonance in Solids. 2019;21(3):19310 (13 pp.). https://doi.org/10.26907/mrsej-19310